risingwave_common/array/bytes_array.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::iter;
use std::mem::size_of;
use risingwave_common_estimate_size::EstimateSize;
use risingwave_pb::common::buffer::CompressionType;
use risingwave_pb::common::Buffer;
use risingwave_pb::data::{ArrayType, PbArray};
use super::{Array, ArrayBuilder, DataType};
use crate::bitmap::{Bitmap, BitmapBuilder};
use crate::util::iter_util::ZipEqDebug;
/// `BytesArray` is a collection of Rust `[u8]`s.
#[derive(Debug, Clone, PartialEq, Eq, EstimateSize)]
pub struct BytesArray {
offset: Box<[u32]>,
bitmap: Bitmap,
data: Box<[u8]>,
}
impl Array for BytesArray {
type Builder = BytesArrayBuilder;
type OwnedItem = Box<[u8]>;
type RefItem<'a> = &'a [u8];
unsafe fn raw_value_at_unchecked(&self, idx: usize) -> &[u8] {
let begin = *self.offset.get_unchecked(idx) as usize;
let end = *self.offset.get_unchecked(idx + 1) as usize;
self.data.get_unchecked(begin..end)
}
fn len(&self) -> usize {
self.offset.len() - 1
}
fn to_protobuf(&self) -> PbArray {
let offset_buffer = self
.offset
.iter()
// length of offset is n + 1 while the length
// of null_bitmap is n, chain iterator of null_bitmapÆ’
// with one single true here to push the end of offset
// to offset_buffer
.zip_eq_debug(self.null_bitmap().iter().chain(iter::once(true)))
.fold(
Vec::<u8>::with_capacity(self.data.len() * size_of::<usize>()),
|mut buffer, (offset, not_null)| {
// TODO: force convert usize to u64, frontend will treat this offset buffer as
// u64
if not_null {
let offset = *offset as u64;
buffer.extend_from_slice(&offset.to_be_bytes());
}
buffer
},
);
let data_buffer = self.data.clone();
let values = vec![
Buffer {
compression: CompressionType::None as i32,
body: offset_buffer,
},
Buffer {
compression: CompressionType::None as i32,
body: data_buffer.into(),
},
];
let null_bitmap = self.null_bitmap().to_protobuf();
PbArray {
null_bitmap: Some(null_bitmap),
values,
array_type: ArrayType::Bytea as i32,
struct_array_data: None,
list_array_data: None,
}
}
fn null_bitmap(&self) -> &Bitmap {
&self.bitmap
}
fn into_null_bitmap(self) -> Bitmap {
self.bitmap
}
fn set_bitmap(&mut self, bitmap: Bitmap) {
self.bitmap = bitmap;
}
fn data_type(&self) -> DataType {
DataType::Bytea
}
}
impl<'a> FromIterator<Option<&'a [u8]>> for BytesArray {
fn from_iter<I: IntoIterator<Item = Option<&'a [u8]>>>(iter: I) -> Self {
let iter = iter.into_iter();
let mut builder = <Self as Array>::Builder::new(iter.size_hint().0);
for i in iter {
builder.append(i);
}
builder.finish()
}
}
impl<'a> FromIterator<&'a Option<&'a [u8]>> for BytesArray {
fn from_iter<I: IntoIterator<Item = &'a Option<&'a [u8]>>>(iter: I) -> Self {
iter.into_iter().cloned().collect()
}
}
impl<'a> FromIterator<&'a [u8]> for BytesArray {
fn from_iter<I: IntoIterator<Item = &'a [u8]>>(iter: I) -> Self {
iter.into_iter().map(Some).collect()
}
}
/// `BytesArrayBuilder` use `&[u8]` to build an `BytesArray`.
#[derive(Debug, Clone, EstimateSize)]
pub struct BytesArrayBuilder {
offset: Vec<u32>,
bitmap: BitmapBuilder,
data: Vec<u8>,
}
impl ArrayBuilder for BytesArrayBuilder {
type ArrayType = BytesArray;
/// Creates a new `BytesArrayBuilder`.
///
/// `item_capacity` is the number of items to pre-allocate. The size of the preallocated
/// buffer of offsets is the number of items plus one.
/// No additional memory is pre-allocated for the data buffer.
fn new(item_capacity: usize) -> Self {
let mut offset = Vec::with_capacity(item_capacity + 1);
offset.push(0);
Self {
offset,
data: Vec::with_capacity(0),
bitmap: BitmapBuilder::with_capacity(item_capacity),
}
}
fn with_type(item_capacity: usize, ty: DataType) -> Self {
assert_eq!(ty, DataType::Bytea);
Self::new(item_capacity)
}
fn append_n<'a>(&'a mut self, n: usize, value: Option<&'a [u8]>) {
match value {
Some(x) => {
self.bitmap.append_n(n, true);
self.data.reserve(x.len() * n);
self.offset.reserve(n);
assert!(self.data.capacity() <= u32::MAX as usize);
for _ in 0..n {
self.data.extend_from_slice(x);
self.offset.push(self.data.len() as u32);
}
}
None => {
self.bitmap.append_n(n, false);
self.offset.reserve(n);
for _ in 0..n {
self.offset.push(self.data.len() as u32);
}
}
}
}
fn append_array(&mut self, other: &BytesArray) {
for bit in other.bitmap.iter() {
self.bitmap.append(bit);
}
self.data.extend_from_slice(&other.data);
let start = *self.offset.last().unwrap();
for other_offset in &other.offset[1..] {
self.offset.push(*other_offset + start);
}
}
fn pop(&mut self) -> Option<()> {
if self.bitmap.pop().is_some() {
self.offset.pop().unwrap();
let end = self.offset.last().unwrap();
self.data.truncate(*end as usize);
Some(())
} else {
None
}
}
fn len(&self) -> usize {
self.bitmap.len()
}
fn finish(self) -> BytesArray {
BytesArray {
bitmap: self.bitmap.finish(),
data: self.data.into(),
offset: self.offset.into(),
}
}
}
impl BytesArrayBuilder {
pub fn writer(&mut self) -> BytesWriter<'_> {
BytesWriter { builder: self }
}
/// `append_partial` will add a partial dirty data of the new record.
/// The partial data will keep untracked until `finish_partial` was called.
unsafe fn append_partial(&mut self, x: &[u8]) {
self.data.extend_from_slice(x);
}
/// `finish_partial` will create a new record based on the current dirty data.
/// `finish_partial` was safe even if we don't call `append_partial`, which is equivalent to
/// appending an empty bytes.
fn finish_partial(&mut self) {
self.offset.push(self.data.len() as u32);
self.bitmap.append(true);
}
/// Rollback the partial-written data by [`Self::append_partial`].
///
/// This is a safe method, if no `append_partial` was called, then the call has no effect.
fn rollback_partial(&mut self) {
let &last_offset = self.offset.last().unwrap();
assert!(last_offset <= self.data.len() as u32);
self.data.truncate(last_offset as usize);
}
}
pub struct BytesWriter<'a> {
builder: &'a mut BytesArrayBuilder,
}
impl<'a> BytesWriter<'a> {
/// `write_ref` will consume `BytesWriter` and pass the ownership of `builder` to `BytesGuard`.
pub fn write_ref(self, value: &[u8]) {
self.builder.append(Some(value));
}
/// `begin` will create a `PartialBytesWriter`, which allow multiple appendings to create a new
/// record.
pub fn begin(self) -> PartialBytesWriter<'a> {
PartialBytesWriter {
builder: self.builder,
}
}
}
pub struct PartialBytesWriter<'a> {
builder: &'a mut BytesArrayBuilder,
}
impl PartialBytesWriter<'_> {
/// `write_ref` will append partial dirty data to `builder`.
/// `PartialBytesWriter::write_ref` is different from `BytesWriter::write_ref`
/// in that it allows us to call it multiple times.
pub fn write_ref(&mut self, value: &[u8]) {
// SAFETY: We'll clean the dirty `builder` in the `drop`.
unsafe { self.builder.append_partial(value) }
}
/// `finish` will be called while the entire record is written.
/// Exactly one new record was appended and the `builder` can be safely used.
pub fn finish(self) {
self.builder.finish_partial();
}
}
impl Drop for PartialBytesWriter<'_> {
fn drop(&mut self) {
// If `finish` is not called, we should rollback the data.
self.builder.rollback_partial();
}
}