risingwave_common/array/data_chunk.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::borrow::Cow;
use std::fmt;
use std::fmt::Display;
use std::hash::BuildHasher;
use std::sync::Arc;
use bytes::Bytes;
use either::Either;
use itertools::Itertools;
use rand::rngs::SmallRng;
use rand::{Rng, SeedableRng};
use risingwave_common_estimate_size::EstimateSize;
use risingwave_pb::data::PbDataChunk;
use super::{Array, ArrayImpl, ArrayRef, ArrayResult, StructArray};
use crate::array::data_chunk_iter::RowRef;
use crate::array::ArrayBuilderImpl;
use crate::bitmap::{Bitmap, BitmapBuilder};
use crate::field_generator::{FieldGeneratorImpl, VarcharProperty};
use crate::hash::HashCode;
use crate::row::Row;
use crate::types::{DataType, DatumRef, StructType, ToOwnedDatum, ToText};
use crate::util::chunk_coalesce::DataChunkBuilder;
use crate::util::hash_util::finalize_hashers;
use crate::util::iter_util::ZipEqFast;
use crate::util::value_encoding::{
estimate_serialize_datum_size, serialize_datum_into, try_get_exact_serialize_datum_size,
ValueRowSerializer,
};
/// [`DataChunk`] is a collection of Columns,
/// a with visibility mask for each row.
/// For instance, we could have a [`DataChunk`] of this format.
///
/// | v1 | v2 | v3 |
/// |----|----|----|
/// | 1 | a | t |
/// | 2 | b | f |
/// | 3 | c | t |
/// | 4 | d | f |
///
/// Our columns are v1, v2, v3.
/// Then, if the Visibility Mask hides rows 2 and 4,
/// We will only have these rows visible:
///
/// | v1 | v2 | v3 |
/// |----|----|----|
/// | 1 | a | t |
/// | 3 | c | t |
#[derive(Clone, PartialEq)]
#[must_use]
pub struct DataChunk {
columns: Arc<[ArrayRef]>,
visibility: Bitmap,
}
impl DataChunk {
pub(crate) const PRETTY_TABLE_PRESET: &'static str = "||--+-++| ++++++";
/// Create a `DataChunk` with `columns` and visibility.
///
/// The visibility can either be a `Bitmap` or a simple cardinality number.
pub fn new(columns: Vec<ArrayRef>, visibility: impl Into<Bitmap>) -> Self {
let visibility = visibility.into();
let capacity = visibility.len();
for column in &columns {
assert_eq!(capacity, column.len());
}
DataChunk {
columns: columns.into(),
visibility,
}
}
/// `new_dummy` creates a data chunk without columns but only a cardinality.
pub fn new_dummy(cardinality: usize) -> Self {
DataChunk {
columns: Arc::new([]),
visibility: Bitmap::ones(cardinality),
}
}
/// Build a `DataChunk` with rows.
///
/// Panics if the `rows` is empty.
///
/// Should prefer using [`DataChunkBuilder`] instead to avoid unnecessary allocation
/// of rows.
pub fn from_rows(rows: &[impl Row], data_types: &[DataType]) -> Self {
// `append_one_row` will cause the builder to finish immediately once capacity is met.
// Hence, we allocate an extra row here, to avoid the builder finishing prematurely.
// This just makes the code cleaner, since we can loop through all rows, and consume it finally.
// TODO: introduce `new_unlimited` to decouple memory reservation from builder capacity.
let mut builder = DataChunkBuilder::new(data_types.to_vec(), rows.len() + 1);
for row in rows {
let none = builder.append_one_row(row);
debug_assert!(none.is_none());
}
builder.consume_all().expect("chunk should not be empty")
}
/// Return the next visible row index on or after `row_idx`.
pub fn next_visible_row_idx(&self, row_idx: usize) -> Option<usize> {
self.visibility.next_set_bit(row_idx)
}
pub fn into_parts(self) -> (Vec<ArrayRef>, Bitmap) {
(self.columns.to_vec(), self.visibility)
}
pub fn into_parts_v2(self) -> (Arc<[ArrayRef]>, Bitmap) {
(self.columns, self.visibility)
}
pub fn from_parts(columns: Arc<[ArrayRef]>, visibilities: Bitmap) -> Self {
Self {
columns,
visibility: visibilities,
}
}
pub fn dimension(&self) -> usize {
self.columns.len()
}
// TODO(rc): shall we rename this to `visible_size`? I sometimes find this confused with `capacity`.
/// `cardinality` returns the number of visible tuples
pub fn cardinality(&self) -> usize {
self.visibility.count_ones()
}
// TODO(rc): shall we rename this to `size`?
/// `capacity` returns physical length of any chunk column
pub fn capacity(&self) -> usize {
self.visibility.len()
}
pub fn selectivity(&self) -> f64 {
if self.visibility.is_empty() {
0.0
} else if self.visibility.all() {
1.0
} else {
self.visibility.count_ones() as f64 / self.visibility.len() as f64
}
}
pub fn with_visibility(&self, visibility: impl Into<Bitmap>) -> Self {
DataChunk {
columns: self.columns.clone(),
visibility: visibility.into(),
}
}
pub fn visibility(&self) -> &Bitmap {
&self.visibility
}
pub fn set_visibility(&mut self, visibility: Bitmap) {
assert_eq!(visibility.len(), self.capacity());
self.visibility = visibility;
}
pub fn is_compacted(&self) -> bool {
self.visibility.all()
}
pub fn column_at(&self, idx: usize) -> &ArrayRef {
&self.columns[idx]
}
pub fn columns(&self) -> &[ArrayRef] {
&self.columns
}
/// Returns the data types of all columns.
pub fn data_types(&self) -> Vec<DataType> {
self.columns.iter().map(|col| col.data_type()).collect()
}
/// Divides one chunk into two at an column index.
///
/// # Panics
///
/// Panics if `idx > columns.len()`.
pub fn split_column_at(&self, idx: usize) -> (Self, Self) {
let (left, right) = self.columns.split_at(idx);
let left = DataChunk::new(left.to_vec(), self.visibility.clone());
let right = DataChunk::new(right.to_vec(), self.visibility.clone());
(left, right)
}
pub fn to_protobuf(&self) -> PbDataChunk {
assert!(self.visibility.all(), "must be compacted before transfer");
let mut proto = PbDataChunk {
cardinality: self.cardinality() as u32,
columns: Default::default(),
};
let column_ref = &mut proto.columns;
for array in &*self.columns {
column_ref.push(array.to_protobuf());
}
proto
}
/// `compact` will convert the chunk to compact format.
/// Compacting removes the hidden rows, and returns a new visibility
/// mask which indicates this.
///
/// `compact` has trade-offs:
///
/// Cost:
/// It has to rebuild the each column, meaning it will incur cost
/// of copying over bytes from the original column array to the new one.
///
/// Benefit:
/// The main benefit is that the data chunk is smaller, taking up less memory.
/// We can also save the cost of iterating over many hidden rows.
pub fn compact(self) -> Self {
if self.visibility.all() {
return self;
}
let cardinality = self.visibility.count_ones();
let columns = self
.columns
.iter()
.map(|col| {
let array = col;
array.compact(&self.visibility, cardinality).into()
})
.collect::<Vec<_>>();
Self::new(columns, Bitmap::ones(cardinality))
}
/// Scatter a compacted chunk to a new chunk with the given visibility.
pub fn uncompact(self, vis: Bitmap) -> Self {
let mut uncompact_builders: Vec<_> = self
.columns
.iter()
.map(|c| c.create_builder(vis.len()))
.collect();
let mut last_u = None;
for (idx, u) in vis.iter_ones().enumerate() {
// pad invisible rows with NULL
let zeros = if let Some(last_u) = last_u {
u - last_u - 1
} else {
u
};
for _ in 0..zeros {
uncompact_builders
.iter_mut()
.for_each(|builder| builder.append_null());
}
uncompact_builders
.iter_mut()
.zip_eq_fast(self.columns.iter())
.for_each(|(builder, c)| builder.append(c.datum_at(idx)));
last_u = Some(u);
}
let zeros = if let Some(last_u) = last_u {
vis.len() - last_u - 1
} else {
vis.len()
};
for _ in 0..zeros {
uncompact_builders
.iter_mut()
.for_each(|builder| builder.append_null());
}
let array: Vec<_> = uncompact_builders
.into_iter()
.map(|builder| Arc::new(builder.finish()))
.collect();
Self::new(array, vis)
}
/// Convert the chunk to compact format.
///
/// If the chunk is not compacted, return a new compacted chunk, otherwise return a reference to self.
pub fn compact_cow(&self) -> Cow<'_, Self> {
if self.visibility.all() {
return Cow::Borrowed(self);
}
let cardinality = self.visibility.count_ones();
let columns = self
.columns
.iter()
.map(|col| {
let array = col;
array.compact(&self.visibility, cardinality).into()
})
.collect::<Vec<_>>();
Cow::Owned(Self::new(columns, Bitmap::ones(cardinality)))
}
pub fn from_protobuf(proto: &PbDataChunk) -> ArrayResult<Self> {
let mut columns = vec![];
for any_col in proto.get_columns() {
let cardinality = proto.get_cardinality() as usize;
columns.push(ArrayImpl::from_protobuf(any_col, cardinality)?.into());
}
let chunk = DataChunk::new(columns, proto.cardinality as usize);
Ok(chunk)
}
/// `rechunk` creates a new vector of data chunk whose size is `each_size_limit`.
/// When the total cardinality of all the chunks is not evenly divided by the `each_size_limit`,
/// the last new chunk will be the remainder.
pub fn rechunk(chunks: &[DataChunk], each_size_limit: usize) -> ArrayResult<Vec<DataChunk>> {
let Some(data_types) = chunks.first().map(|c| c.data_types()) else {
return Ok(Vec::new());
};
let mut builder = DataChunkBuilder::new(data_types, each_size_limit);
let mut outputs = Vec::new();
for chunk in chunks {
for output in builder.append_chunk(chunk.clone()) {
outputs.push(output);
}
}
if let Some(output) = builder.consume_all() {
outputs.push(output);
}
Ok(outputs)
}
/// Compute hash values for each row. The number of the returning `HashCodes` is `self.capacity()`.
/// When `skip_invisible_row` is true, the `HashCode` for the invisible rows is arbitrary.
pub fn get_hash_values<H: BuildHasher>(
&self,
column_idxes: &[usize],
hasher_builder: H,
) -> Vec<HashCode<H>> {
let len = self.capacity();
let mut states = Vec::with_capacity(len);
states.resize_with(len, || hasher_builder.build_hasher());
// Compute hash for the specified columns.
for column_idx in column_idxes {
let array = self.column_at(*column_idx);
array.hash_vec(&mut states[..], self.visibility());
}
finalize_hashers(&states[..])
.into_iter()
.map(|hash_code| hash_code.into())
.collect_vec()
}
/// Random access a tuple in a data chunk. Return in a row format.
/// # Arguments
/// * `pos` - Index of look up tuple
/// * `RowRef` - Reference of data tuple
/// * bool - whether this tuple is visible
pub fn row_at(&self, pos: usize) -> (RowRef<'_>, bool) {
let row = self.row_at_unchecked_vis(pos);
let vis = self.visibility.is_set(pos);
(row, vis)
}
/// Random access a tuple in a data chunk. Return in a row format.
/// Note that this function do not return whether the row is visible.
/// # Arguments
/// * `pos` - Index of look up tuple
pub fn row_at_unchecked_vis(&self, pos: usize) -> RowRef<'_> {
RowRef::new(self, pos)
}
/// Returns a table-like text representation of the `DataChunk`.
pub fn to_pretty(&self) -> impl Display {
use comfy_table::Table;
if self.cardinality() == 0 {
return Either::Left("(empty)");
}
let mut table = Table::new();
table.load_preset(Self::PRETTY_TABLE_PRESET);
for row in self.rows() {
let cells: Vec<_> = row
.iter()
.map(|v| {
match v {
None => "".to_owned(), // NULL
Some(scalar) => scalar.to_text(),
}
})
.collect();
table.add_row(cells);
}
Either::Right(table)
}
/// Keep the specified columns and set the rest elements to null.
///
/// # Example
///
/// ```text
/// i i i i i i
/// 1 2 3 --> keep_columns([1]) --> . 2 .
/// 4 5 6 . 5 .
/// ```
pub fn keep_columns(&self, column_indices: &[usize]) -> Self {
let capacity: usize = self.capacity();
let columns = (self.columns.iter().enumerate())
.map(|(i, column)| {
if column_indices.contains(&i) {
column.clone()
} else {
let mut builder = column.create_builder(capacity);
builder.append_n(capacity, None as DatumRef<'_>);
builder.finish().into()
}
})
.collect();
DataChunk {
columns,
visibility: self.visibility.clone(),
}
}
/// Reorder (and possibly remove) columns.
///
/// e.g. if `indices` is `[2, 1, 0]`, and the chunk contains column `[a, b, c]`, then the output
/// will be `[c, b, a]`. If `indices` is [2, 0], then the output will be `[c, a]`.
/// If the input mapping is identity mapping, no reorder will be performed.
pub fn project(&self, indices: &[usize]) -> Self {
Self {
columns: indices.iter().map(|i| self.columns[*i].clone()).collect(),
visibility: self.visibility.clone(),
}
}
/// Reorder columns and set visibility.
pub fn project_with_vis(&self, indices: &[usize], visibility: Bitmap) -> Self {
assert_eq!(visibility.len(), self.capacity());
Self {
columns: indices.iter().map(|i| self.columns[*i].clone()).collect(),
visibility,
}
}
/// Reorder rows by indexes.
pub fn reorder_rows(&self, indexes: &[usize]) -> Self {
let mut array_builders: Vec<ArrayBuilderImpl> = self
.columns
.iter()
.map(|col| col.create_builder(indexes.len()))
.collect();
for &i in indexes {
for (builder, col) in array_builders.iter_mut().zip_eq_fast(self.columns.iter()) {
builder.append(col.value_at(i));
}
}
let columns = array_builders
.into_iter()
.map(|builder| builder.finish().into())
.collect();
DataChunk::new(columns, indexes.len())
}
/// Partition fixed size datums and variable length ones.
/// ---
/// In some cases, we have fixed size for the entire column,
/// when the datatypes are fixed size or the datums are constants.
/// As such we can compute the size for it just once for the column.
///
/// Otherwise, for variable sized datatypes, such as `varchar`,
/// we have to individually compute their sizes per row.
fn partition_sizes(&self) -> (usize, Vec<&ArrayRef>) {
let mut col_variable: Vec<&ArrayRef> = vec![];
let mut row_len_fixed: usize = 0;
for c in &*self.columns {
if let Some(field_len) = try_get_exact_serialize_datum_size(c) {
row_len_fixed += field_len;
} else {
col_variable.push(c);
}
}
(row_len_fixed, col_variable)
}
unsafe fn compute_size_of_variable_cols_in_row(
variable_cols: &[&ArrayRef],
row_idx: usize,
) -> usize {
variable_cols
.iter()
.map(|col| estimate_serialize_datum_size(col.value_at_unchecked(row_idx)))
.sum::<usize>()
}
unsafe fn init_buffer(
row_len_fixed: usize,
variable_cols: &[&ArrayRef],
row_idx: usize,
) -> Vec<u8> {
Vec::with_capacity(
row_len_fixed + Self::compute_size_of_variable_cols_in_row(variable_cols, row_idx),
)
}
/// Serialize each row into value encoding bytes.
///
/// The returned vector's size is `self.capacity()` and for the invisible row will give a empty
/// bytes.
// Note(bugen): should we exclude the invisible rows in the output so that the caller won't need
// to handle visibility again?
pub fn serialize(&self) -> Vec<Bytes> {
let buffers = if !self.visibility.all() {
let rows_num = self.visibility.len();
let mut buffers: Vec<Vec<u8>> = vec![];
let (row_len_fixed, col_variable) = self.partition_sizes();
// First initialize buffer with the right size to avoid re-allocations
for i in 0..rows_num {
// SAFETY(value_at_unchecked): the idx is always in bound.
unsafe {
if self.visibility.is_set_unchecked(i) {
buffers.push(Self::init_buffer(row_len_fixed, &col_variable, i));
} else {
buffers.push(vec![]);
}
}
}
// Then do the actual serialization
for c in &*self.columns {
assert_eq!(c.len(), rows_num);
for (i, buffer) in buffers.iter_mut().enumerate() {
// SAFETY(value_at_unchecked): the idx is always in bound.
unsafe {
if self.visibility.is_set_unchecked(i) {
serialize_datum_into(c.value_at_unchecked(i), buffer);
}
}
}
}
buffers
} else {
let mut buffers: Vec<Vec<u8>> = vec![];
let (row_len_fixed, col_variable) = self.partition_sizes();
for i in 0..self.visibility.len() {
unsafe {
buffers.push(Self::init_buffer(row_len_fixed, &col_variable, i));
}
}
for c in &*self.columns {
assert_eq!(c.len(), self.visibility.len());
for (i, buffer) in buffers.iter_mut().enumerate() {
// SAFETY(value_at_unchecked): the idx is always in bound.
unsafe {
serialize_datum_into(c.value_at_unchecked(i), buffer);
}
}
}
buffers
};
buffers.into_iter().map(|item| item.into()).collect_vec()
}
/// Serialize each row into bytes with given serializer.
///
/// This is similar to `serialize` but it uses a custom serializer. Prefer `serialize` if
/// possible since it might be more efficient due to columnar operations.
pub fn serialize_with(&self, serializer: &impl ValueRowSerializer) -> Vec<Bytes> {
let mut results = Vec::with_capacity(self.capacity());
for row in self.rows_with_holes() {
results.push(if let Some(row) = row {
serializer.serialize(row).into()
} else {
Bytes::new()
});
}
results
}
/// Estimate size of hash keys. Their indices in a row are indicated by `column_indices`.
/// Size here refers to the number of u8s required to store the serialized datum.
pub fn estimate_value_encoding_size(&self, column_indices: &[usize]) -> usize {
if self.capacity() == 0 {
0
} else {
column_indices
.iter()
.map(|idx| {
let datum = self.column_at(*idx).datum_at(0);
estimate_serialize_datum_size(datum)
})
.sum()
}
}
}
impl fmt::Debug for DataChunk {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"DataChunk {{ cardinality = {}, capacity = {}, data = \n{} }}",
self.cardinality(),
self.capacity(),
self.to_pretty()
)
}
}
impl<'a> From<&'a StructArray> for DataChunk {
fn from(array: &'a StructArray) -> Self {
Self {
columns: array.fields().cloned().collect(),
visibility: Bitmap::ones(array.len()),
}
}
}
impl EstimateSize for DataChunk {
fn estimated_heap_size(&self) -> usize {
self.columns
.iter()
.map(|a| a.estimated_heap_size())
.sum::<usize>()
+ self.visibility.estimated_heap_size()
}
}
/// Test utilities for [`DataChunk`].
pub trait DataChunkTestExt {
/// SEED for generating data chunk.
const SEED: u64 = 0xFF67FEABBAEF76FF;
/// Parse a chunk from string.
///
/// # Format
///
/// The first line is a header indicating the column types.
/// The following lines indicate rows within the chunk.
/// Each line starts with an operation followed by values.
/// NULL values are represented as `.`.
///
/// # Example
/// ```
/// use risingwave_common::array::{DataChunk, DataChunkTestExt};
/// let chunk = DataChunk::from_pretty(
/// "I I I I // type chars
/// 2 5 . . // '.' means NULL
/// 2 5 2 6 D // 'D' means deleted in visibility
/// . . 4 8 // ^ comments are ignored
/// . . 3 4",
/// );
///
/// // type chars:
/// // B: bool
/// // I: i64
/// // i: i32
/// // F: f64
/// // f: f32
/// // T: str
/// // TS: Timestamp
/// // SRL: Serial
/// // <i,f>: struct
/// ```
fn from_pretty(s: &str) -> Self;
/// Insert one invisible hole after every record.
fn with_invisible_holes(self) -> Self
where
Self: Sized;
/// Panic if the chunk is invalid.
fn assert_valid(&self);
/// Generate data chunk when supplied with `chunk_size` and column data types.
fn gen_data_chunk(
chunk_offset: usize,
chunk_size: usize,
data_types: &[DataType],
string_properties: &VarcharProperty,
visibility_ratio: f64,
) -> Self;
/// Generate data chunks when supplied with `chunk_size` and column data types.
fn gen_data_chunks(
num_of_chunks: usize,
chunk_size: usize,
data_types: &[DataType],
string_properties: &VarcharProperty,
visibility_ratio: f64,
) -> Vec<Self>
where
Self: Sized;
}
impl DataChunkTestExt for DataChunk {
fn from_pretty(s: &str) -> Self {
use crate::types::ScalarImpl;
fn parse_type(s: &str) -> DataType {
if let Some(s) = s.strip_suffix("[]") {
return DataType::List(Box::new(parse_type(s)));
}
match s {
"B" => DataType::Boolean,
"I" => DataType::Int64,
"i" => DataType::Int32,
"F" => DataType::Float64,
"f" => DataType::Float32,
"TS" => DataType::Timestamp,
"TZ" => DataType::Timestamptz,
"T" => DataType::Varchar,
"SRL" => DataType::Serial,
array if array.starts_with('<') && array.ends_with('>') => {
DataType::Struct(StructType::unnamed(
array[1..array.len() - 1]
.split(',')
.map(parse_type)
.collect(),
))
}
_ => todo!("unsupported type: {s:?}"),
}
}
let mut lines = s.split('\n').filter(|l| !l.trim().is_empty());
// initialize array builders from the first line
let header = lines.next().unwrap().trim();
let datatypes = header
.split_ascii_whitespace()
.take_while(|c| *c != "//")
.map(parse_type)
.collect::<Vec<_>>();
let mut array_builders = datatypes
.iter()
.map(|ty| ty.create_array_builder(1))
.collect::<Vec<_>>();
let mut visibility = vec![];
for line in lines {
let mut token = line.trim().split_ascii_whitespace();
// allow `zip` since `token` may longer than `array_builders`
#[allow(clippy::disallowed_methods)]
for ((builder, ty), val_str) in
array_builders.iter_mut().zip(&datatypes).zip(&mut token)
{
let datum = match val_str {
"." => None,
"(empty)" => Some("".into()),
_ => Some(ScalarImpl::from_text(val_str, ty).unwrap()),
};
builder.append(datum);
}
let visible = match token.next() {
None | Some("//") => true,
Some("D") => false,
Some(t) => panic!("invalid token: {t:?}"),
};
visibility.push(visible);
}
let columns = array_builders
.into_iter()
.map(|builder| builder.finish().into())
.collect();
let vis = Bitmap::from_iter(visibility);
let chunk = DataChunk::new(columns, vis);
chunk.assert_valid();
chunk
}
fn with_invisible_holes(self) -> Self
where
Self: Sized,
{
let (cols, vis) = self.into_parts();
let n = vis.len();
let mut new_vis = BitmapBuilder::with_capacity(n * 2);
for b in vis.iter() {
new_vis.append(b);
new_vis.append(false);
}
let new_cols = cols
.into_iter()
.map(|col| {
let arr = col;
let mut builder = arr.create_builder(n * 2);
for v in arr.iter() {
builder.append(v.to_owned_datum());
builder.append_null();
}
builder.finish().into()
})
.collect();
let chunk = DataChunk::new(new_cols, new_vis.finish());
chunk.assert_valid();
chunk
}
fn assert_valid(&self) {
let cols = self.columns();
let vis = &self.visibility;
let n = vis.len();
for col in cols {
assert_eq!(col.len(), n);
}
}
fn gen_data_chunk(
chunk_offset: usize,
chunk_size: usize,
data_types: &[DataType],
varchar_properties: &VarcharProperty,
visibility_percent: f64,
) -> Self {
let vis = if visibility_percent == 0.0 {
Bitmap::zeros(chunk_size)
} else if visibility_percent == 1.0 {
Bitmap::ones(chunk_size)
} else {
let mut rng = SmallRng::from_seed([0; 32]);
let mut vis_builder = BitmapBuilder::with_capacity(chunk_size);
for _i in 0..chunk_size {
vis_builder.append(rng.gen_bool(visibility_percent));
}
vis_builder.finish()
};
let mut columns = Vec::new();
// Generate columns of this chunk.
for data_type in data_types {
let mut array_builder = data_type.create_array_builder(chunk_size);
for j in 0..chunk_size {
let offset = ((chunk_offset + 1) * (j + 1)) as u64;
match data_type {
DataType::Varchar => {
let datum =
FieldGeneratorImpl::with_varchar(varchar_properties, Self::SEED)
.generate_datum(offset);
array_builder.append(&datum);
}
DataType::Timestamp => {
let datum =
FieldGeneratorImpl::with_timestamp(None, None, None, Self::SEED)
.expect("create timestamp generator should succeed")
.generate_datum(offset);
array_builder.append(datum);
}
DataType::Timestamptz => {
let datum =
FieldGeneratorImpl::with_timestamptz(None, None, None, Self::SEED)
.expect("create timestamptz generator should succeed")
.generate_datum(offset);
array_builder.append(datum);
}
_ if data_type.is_numeric() => {
let mut data_gen = FieldGeneratorImpl::with_number_random(
data_type.clone(),
None,
None,
Self::SEED,
)
.unwrap();
let datum = data_gen.generate_datum(offset);
array_builder.append(datum);
}
_ => todo!("unsupported type: {data_type:?}"),
}
}
columns.push(array_builder.finish().into());
}
DataChunk::new(columns, vis)
}
fn gen_data_chunks(
num_of_chunks: usize,
chunk_size: usize,
data_types: &[DataType],
varchar_properties: &VarcharProperty,
visibility_percent: f64,
) -> Vec<Self> {
(0..num_of_chunks)
.map(|i| {
Self::gen_data_chunk(
i,
chunk_size,
data_types,
varchar_properties,
visibility_percent,
)
})
.collect()
}
}
#[cfg(test)]
mod tests {
use crate::array::*;
use crate::row::Row;
#[test]
fn test_rechunk() {
let test_case = |num_chunks: usize, chunk_size: usize, new_chunk_size: usize| {
let mut chunks = vec![];
for chunk_idx in 0..num_chunks {
let mut builder = PrimitiveArrayBuilder::<i32>::new(0);
for i in chunk_size * chunk_idx..chunk_size * (chunk_idx + 1) {
builder.append(Some(i as i32));
}
let chunk = DataChunk::new(vec![Arc::new(builder.finish().into())], chunk_size);
chunks.push(chunk);
}
let total_size = num_chunks * chunk_size;
let num_full_new_chunk = total_size / new_chunk_size;
let mut chunk_sizes = vec![new_chunk_size; num_full_new_chunk];
let remainder = total_size % new_chunk_size;
if remainder != 0 {
chunk_sizes.push(remainder);
}
let new_chunks = DataChunk::rechunk(&chunks, new_chunk_size).unwrap();
assert_eq!(new_chunks.len(), chunk_sizes.len());
// check cardinality
for (idx, chunk_size) in chunk_sizes.iter().enumerate() {
assert_eq!(*chunk_size, new_chunks[idx].capacity());
}
let mut chunk_idx = 0;
let mut cur_idx = 0;
for val in 0..total_size {
if cur_idx >= chunk_sizes[chunk_idx] {
cur_idx = 0;
chunk_idx += 1;
}
assert_eq!(
new_chunks[chunk_idx]
.column_at(0)
.as_int32()
.value_at(cur_idx)
.unwrap(),
val as i32
);
cur_idx += 1;
}
};
test_case(0, 0, 1);
test_case(0, 10, 1);
test_case(10, 0, 1);
test_case(1, 1, 6);
test_case(1, 10, 11);
test_case(2, 3, 6);
test_case(5, 5, 6);
test_case(10, 10, 7);
}
#[test]
fn test_chunk_iter() {
let num_of_columns: usize = 2;
let length = 5;
let mut columns = vec![];
for i in 0..num_of_columns {
let mut builder = PrimitiveArrayBuilder::<i32>::new(length);
for _ in 0..length {
builder.append(Some(i as i32));
}
let arr = builder.finish();
columns.push(Arc::new(arr.into()))
}
let chunk: DataChunk = DataChunk::new(columns, length);
for row in chunk.rows() {
for i in 0..num_of_columns {
let val = row.datum_at(i).unwrap();
assert_eq!(val.into_int32(), i as i32);
}
}
}
#[test]
fn test_to_pretty_string() {
let chunk = DataChunk::new(
vec![
Arc::new(I64Array::from_iter([1, 2, 3, 4]).into()),
Arc::new(I64Array::from_iter([Some(6), None, Some(7), None]).into()),
],
4,
);
assert_eq!(
chunk.to_pretty().to_string(),
"\
+---+---+
| 1 | 6 |
| 2 | |
| 3 | 7 |
| 4 | |
+---+---+"
);
}
#[test]
fn test_no_column_chunk() {
let chunk = DataChunk::new_dummy(10);
assert_eq!(chunk.rows().count(), 10);
let chunk_after_serde = DataChunk::from_protobuf(&chunk.to_protobuf()).unwrap();
assert_eq!(chunk_after_serde.rows().count(), 10);
assert_eq!(chunk_after_serde.cardinality(), 10);
}
#[test]
fn reorder_columns() {
let chunk = DataChunk::from_pretty(
"I I I
2 5 1
4 9 2
6 9 3",
);
assert_eq!(
chunk.project(&[2, 1, 0]),
DataChunk::from_pretty(
"I I I
1 5 2
2 9 4
3 9 6",
)
);
assert_eq!(
chunk.project(&[2, 0]),
DataChunk::from_pretty(
"I I
1 2
2 4
3 6",
)
);
assert_eq!(chunk.project(&[0, 1, 2]), chunk);
assert_eq!(chunk.project(&[]).cardinality(), 3);
}
#[test]
fn test_chunk_estimated_size() {
assert_eq!(
72,
DataChunk::from_pretty(
"I I I
1 5 2
2 9 4
3 9 6",
)
.estimated_heap_size()
);
assert_eq!(
48,
DataChunk::from_pretty(
"I I
1 2
2 4
3 6",
)
.estimated_heap_size()
);
}
}