risingwave_common/util/epoch.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::LazyLock;
use std::time::{Duration, SystemTime};
use easy_ext::ext;
use parse_display::Display;
use crate::types::{ScalarImpl, Timestamptz};
static UNIX_RISINGWAVE_DATE_SEC: u64 = 1_617_235_200;
/// [`UNIX_RISINGWAVE_DATE_EPOCH`] represents the risingwave date of the UNIX epoch:
/// 2021-04-01T00:00:00Z.
pub static UNIX_RISINGWAVE_DATE_EPOCH: LazyLock<SystemTime> =
LazyLock::new(|| SystemTime::UNIX_EPOCH + Duration::from_secs(UNIX_RISINGWAVE_DATE_SEC));
#[derive(Clone, Copy, Debug, Display, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Epoch(pub u64);
/// `INVALID_EPOCH` defines the invalid epoch value.
pub const INVALID_EPOCH: u64 = 0;
const EPOCH_PHYSICAL_SHIFT_BITS: u8 = 16;
impl Epoch {
pub fn now() -> Self {
Self(Self::physical_now() << EPOCH_PHYSICAL_SHIFT_BITS)
}
#[must_use]
pub fn next(self) -> Self {
let mut physical_now = Epoch::physical_now();
let prev_physical_time = self.physical_time();
loop {
if physical_now > prev_physical_time {
break;
}
physical_now = Epoch::physical_now();
#[cfg(madsim)]
tokio::time::advance(std::time::Duration::from_micros(10));
#[cfg(not(madsim))]
std::hint::spin_loop();
}
// The last 16 bits of the previous epoch ((prev_epoch + 1, prev_epoch + 65536)) will be
// used as the gap epoch when the mem table spill occurs.
let next_epoch = Self::from_physical_time(physical_now);
assert!(next_epoch.0 > self.0);
next_epoch
}
/// milliseconds since the RisingWave epoch
pub fn physical_time(&self) -> u64 {
self.0 >> EPOCH_PHYSICAL_SHIFT_BITS
}
pub fn from_physical_time(time: u64) -> Self {
Epoch(time << EPOCH_PHYSICAL_SHIFT_BITS)
}
pub fn from_unix_millis(mi: u64) -> Self {
Epoch((mi - UNIX_RISINGWAVE_DATE_SEC * 1000) << EPOCH_PHYSICAL_SHIFT_BITS)
}
pub fn from_unix_millis_or_earliest(mi: u64) -> Self {
Epoch((mi.saturating_sub(UNIX_RISINGWAVE_DATE_SEC * 1000)) << EPOCH_PHYSICAL_SHIFT_BITS)
}
pub fn physical_now() -> u64 {
UNIX_RISINGWAVE_DATE_EPOCH
.elapsed()
.expect("system clock set earlier than risingwave date!")
.as_millis() as u64
}
pub fn as_unix_millis(&self) -> u64 {
UNIX_RISINGWAVE_DATE_SEC * 1000 + self.physical_time()
}
pub fn as_unix_secs(&self) -> u64 {
UNIX_RISINGWAVE_DATE_SEC + self.physical_time() / 1000
}
/// Returns the epoch in a Timestamptz.
pub fn as_timestamptz(&self) -> Timestamptz {
Timestamptz::from_millis(self.as_unix_millis() as i64).expect("epoch is out of range")
}
/// Returns the epoch in a Timestamptz scalar.
pub fn as_scalar(&self) -> ScalarImpl {
self.as_timestamptz().into()
}
/// Returns the epoch in real system time.
pub fn as_system_time(&self) -> SystemTime {
*UNIX_RISINGWAVE_DATE_EPOCH + Duration::from_millis(self.physical_time())
}
/// Returns the epoch subtract `relative_time_ms`, which used for ttl to get epoch corresponding
/// to the lowerbound timepoint (`src/storage/src/hummock/iterator/forward_user.rs`)
pub fn subtract_ms(&self, relative_time_ms: u64) -> Self {
let physical_time = self.physical_time();
if physical_time < relative_time_ms {
Epoch(INVALID_EPOCH)
} else {
Epoch((physical_time - relative_time_ms) << EPOCH_PHYSICAL_SHIFT_BITS)
}
}
}
pub const EPOCH_AVAILABLE_BITS: u64 = 16;
pub const MAX_SPILL_TIMES: u16 = ((1 << EPOCH_AVAILABLE_BITS) - 1) as u16;
// Low EPOCH_AVAILABLE_BITS bits set to 1
pub const EPOCH_SPILL_TIME_MASK: u64 = (1 << EPOCH_AVAILABLE_BITS) - 1;
// High (64-EPOCH_AVAILABLE_BITS) bits set to 1
const EPOCH_MASK: u64 = !EPOCH_SPILL_TIME_MASK;
pub const MAX_EPOCH: u64 = u64::MAX & EPOCH_MASK;
// EPOCH_INC_MIN_STEP_FOR_TEST is the minimum increment step for epoch in unit tests.
// We need to keep the lower 16 bits of the epoch unchanged during each increment,
// and only increase the upper 48 bits.
const EPOCH_INC_MIN_STEP_FOR_TEST: u64 = test_epoch(1);
pub fn is_max_epoch(epoch: u64) -> bool {
// Since we have write `MAX_EPOCH` as max epoch to sstable in some previous version,
// it means that there may be two value in our system which represent infinite. We must check
// both of them for compatibility. See bug description in https://github.com/risingwavelabs/risingwave/issues/13717
epoch >= MAX_EPOCH
}
pub fn is_compatibility_max_epoch(epoch: u64) -> bool {
// See bug description in https://github.com/risingwavelabs/risingwave/issues/13717
epoch == MAX_EPOCH
}
impl From<u64> for Epoch {
fn from(epoch: u64) -> Self {
Self(epoch)
}
}
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct EpochPair {
pub curr: u64,
pub prev: u64,
}
impl EpochPair {
pub fn new(curr: u64, prev: u64) -> Self {
assert!(curr > prev);
Self { curr, prev }
}
pub fn inc_for_test(&mut self) {
self.prev = self.curr;
self.curr += EPOCH_INC_MIN_STEP_FOR_TEST;
}
pub fn new_test_epoch(curr: u64) -> Self {
if !is_max_epoch(curr) {
assert!(curr >= EPOCH_INC_MIN_STEP_FOR_TEST);
assert!((curr & EPOCH_SPILL_TIME_MASK) == 0);
}
Self::new(curr, curr - EPOCH_INC_MIN_STEP_FOR_TEST)
}
}
/// As most unit tests initialize a new epoch from a random value (e.g. 1, 2, 233 etc.), but the correct epoch in the system is a u64 with the last `EPOCH_AVAILABLE_BITS` bits set to 0.
/// This method is to turn a a random epoch into a well shifted value.
pub const fn test_epoch(value_millis: u64) -> u64 {
value_millis << EPOCH_AVAILABLE_BITS
}
/// There are numerous operations in our system's unit tests that involve incrementing or decrementing the epoch.
/// These extensions for u64 type are specifically used within the unit tests.
#[ext(EpochExt)]
pub impl u64 {
fn inc_epoch(&mut self) {
*self += EPOCH_INC_MIN_STEP_FOR_TEST;
}
fn dec_epoch(&mut self) {
*self -= EPOCH_INC_MIN_STEP_FOR_TEST;
}
fn next_epoch(self) -> u64 {
self + EPOCH_INC_MIN_STEP_FOR_TEST
}
fn prev_epoch(self) -> u64 {
self - EPOCH_INC_MIN_STEP_FOR_TEST
}
}
/// Task-local storage for the epoch pair.
pub mod task_local {
use futures::Future;
use tokio::task_local;
use super::{Epoch, EpochPair};
task_local! {
static TASK_LOCAL_EPOCH_PAIR: EpochPair;
}
/// Retrieve the current epoch from the task local storage.
///
/// This value is updated after every yield of the barrier message. Returns `None` if the first
/// barrier message is not yielded.
pub fn curr_epoch() -> Option<Epoch> {
TASK_LOCAL_EPOCH_PAIR.try_with(|e| Epoch(e.curr)).ok()
}
/// Retrieve the previous epoch from the task local storage.
///
/// This value is updated after every yield of the barrier message. Returns `None` if the first
/// barrier message is not yielded.
pub fn prev_epoch() -> Option<Epoch> {
TASK_LOCAL_EPOCH_PAIR.try_with(|e| Epoch(e.prev)).ok()
}
/// Retrieve the epoch pair from the task local storage.
///
/// This value is updated after every yield of the barrier message. Returns `None` if the first
/// barrier message is not yielded.
pub fn epoch() -> Option<EpochPair> {
TASK_LOCAL_EPOCH_PAIR.try_with(|e| *e).ok()
}
/// Provides the given epoch pair in the task local storage for the scope of the given future.
pub async fn scope<F>(epoch: EpochPair, f: F) -> F::Output
where
F: Future,
{
TASK_LOCAL_EPOCH_PAIR.scope(epoch, f).await
}
}
#[cfg(test)]
mod tests {
use chrono::{Local, TimeZone, Utc};
use super::*;
#[test]
fn test_risingwave_system_time() {
let utc = Utc.with_ymd_and_hms(2021, 4, 1, 0, 0, 0).unwrap();
let risingwave_dt = Local.from_utc_datetime(&utc.naive_utc());
let risingwave_st = SystemTime::from(risingwave_dt);
assert_eq!(risingwave_st, *UNIX_RISINGWAVE_DATE_EPOCH);
}
#[tokio::test]
async fn test_epoch_generate() {
let mut prev_epoch = Epoch::now();
for _ in 0..1000 {
let epoch = prev_epoch.next();
assert!(epoch > prev_epoch);
prev_epoch = epoch;
}
}
#[test]
fn test_subtract_ms() {
{
let epoch = Epoch(10);
assert_eq!(0, epoch.physical_time());
assert_eq!(0, epoch.subtract_ms(20).0);
}
{
let epoch = Epoch::now();
let physical_time = epoch.physical_time();
let interval = 10;
assert_ne!(0, physical_time);
assert_eq!(
physical_time - interval,
epoch.subtract_ms(interval).physical_time()
);
}
}
}