risingwave_dml/
table.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::sync::Arc;

use futures_async_stream::try_stream;
use parking_lot::RwLock;
use risingwave_common::array::StreamChunk;
use risingwave_common::catalog::ColumnDesc;
use risingwave_common::transaction::transaction_id::TxnId;
use risingwave_common::transaction::transaction_message::TxnMsg;
use tokio::sync::oneshot;

use crate::error::{DmlError, Result};
use crate::txn_channel::{txn_channel, Receiver, Sender};

pub type TableDmlHandleRef = Arc<TableDmlHandle>;

#[derive(Debug)]
pub struct TableDmlHandleCore {
    /// The senders of the changes channel.
    ///
    /// When a `StreamReader` is created, a channel will be created and the sender will be
    /// saved here. The insert statement will take one channel randomly.
    pub changes_txs: Vec<Sender>,
}

/// [`TableDmlHandle`] is a special internal source to handle table updates from user,
/// including insert/delete/update statements via SQL interface.
///
/// Changed rows will be send to the associated "materialize" streaming task, then be written to the
/// state store. Therefore, [`TableDmlHandle`] can be simply be treated as a channel without side
/// effects.
#[derive(Debug)]
pub struct TableDmlHandle {
    pub core: RwLock<TableDmlHandleCore>,

    /// All columns in this table.
    pub column_descs: Vec<ColumnDesc>,

    /// The initial permits of the channel between each [`TableDmlHandle`] and the dml executors.
    dml_channel_initial_permits: usize,
}

impl TableDmlHandle {
    pub fn new(column_descs: Vec<ColumnDesc>, dml_channel_initial_permits: usize) -> Self {
        let core = TableDmlHandleCore {
            changes_txs: vec![],
        };

        Self {
            core: RwLock::new(core),
            column_descs,
            dml_channel_initial_permits,
        }
    }

    pub fn stream_reader(&self) -> TableStreamReader {
        let mut core = self.core.write();
        // The `txn_channel` is used to limit the maximum chunk permits to avoid the producer
        // produces chunks too fast and cause an out of memory error.
        let (tx, rx) = txn_channel(self.dml_channel_initial_permits);
        core.changes_txs.push(tx);

        TableStreamReader { rx }
    }

    pub fn write_handle(&self, session_id: u32, txn_id: TxnId) -> Result<WriteHandle> {
        // The `changes_txs` should not be empty normally, since we ensured that the channels
        // between the `TableDmlHandle` and the `SourceExecutor`s are ready before we making the
        // table catalog visible to the users. However, when we're recovering, it's possible
        // that the streaming executors are not ready when the frontend is able to schedule DML
        // tasks to the compute nodes, so this'll be temporarily unavailable, so we throw an
        // error instead of asserting here.
        // TODO: may reject DML when streaming executors are not recovered.
        loop {
            let guard = self.core.read();
            if guard.changes_txs.is_empty() {
                return Err(DmlError::NoReader);
            }
            let len = guard.changes_txs.len();
            // Use session id instead of txn_id to choose channel so that we can preserve transaction order in the same session.
            // PS: only hold if there's no scaling on the table.
            let sender = guard
                .changes_txs
                .get((session_id % len as u32) as usize)
                .unwrap()
                .clone();

            drop(guard);

            if sender.is_closed() {
                // Remove all closed channels.
                self.core
                    .write()
                    .changes_txs
                    .retain(|sender| !sender.is_closed());
            } else {
                return Ok(WriteHandle::new(txn_id, sender));
            }
        }
    }

    /// Get the reference of all columns in this table.
    pub fn column_descs(&self) -> &[ColumnDesc] {
        self.column_descs.as_ref()
    }

    pub fn check_chunk_schema(&self, chunk: &StreamChunk) {
        risingwave_common::util::schema_check::schema_check(
            self.column_descs
                .iter()
                .filter_map(|c| (!c.is_generated()).then_some(&c.data_type)),
            chunk.columns(),
        )
        .expect("table source write txn_msg schema check failed");
    }
}

#[derive(Debug, PartialEq)]
enum TxnState {
    Init,
    Begin,
    Committed,
    Rollback,
}

/// [`WriteHandle`] writes its data into a table in a transactional way.
///
/// First, it needs to call `begin()` and then write chunks by calling `write_chunk()`.
///
/// Finally call `end()` to commit the transaction or `rollback()` to rollback the transaction.
///
/// If the [`WriteHandle`] is dropped with a `Begin` transaction state, it will automatically
/// rollback the transaction.
pub struct WriteHandle {
    txn_id: TxnId,
    tx: Sender,
    // Indicate whether `TxnMsg::End` or `TxnMsg::Rollback` have been sent to the write channel.
    txn_state: TxnState,
}

impl Drop for WriteHandle {
    fn drop(&mut self) {
        if self.txn_state == TxnState::Begin {
            let _ = self.rollback_inner();
        }
    }
}

impl WriteHandle {
    pub fn new(txn_id: TxnId, tx: Sender) -> Self {
        Self {
            txn_id,
            tx,
            txn_state: TxnState::Init,
        }
    }

    pub fn begin(&mut self) -> Result<()> {
        assert_eq!(self.txn_state, TxnState::Init);
        self.txn_state = TxnState::Begin;
        // Ignore the notifier.
        self.write_txn_control_msg(TxnMsg::Begin(self.txn_id))?;
        Ok(())
    }

    pub async fn write_chunk(&self, chunk: StreamChunk) -> Result<()> {
        assert_eq!(self.txn_state, TxnState::Begin);
        // Ignore the notifier.
        let _notifier = self
            .write_txn_data_msg(TxnMsg::Data(self.txn_id, chunk))
            .await?;
        Ok(())
    }

    pub async fn end(mut self) -> Result<()> {
        assert_eq!(self.txn_state, TxnState::Begin);
        self.txn_state = TxnState::Committed;
        // Await the notifier.
        let notifier = self.write_txn_control_msg(TxnMsg::End(self.txn_id))?;
        notifier.await.map_err(|_| DmlError::ReaderClosed)?;
        Ok(())
    }

    pub fn rollback(mut self) -> Result<oneshot::Receiver<usize>> {
        self.rollback_inner()
    }

    fn rollback_inner(&mut self) -> Result<oneshot::Receiver<usize>> {
        assert_eq!(self.txn_state, TxnState::Begin);
        self.txn_state = TxnState::Rollback;
        self.write_txn_control_msg(TxnMsg::Rollback(self.txn_id))
    }

    /// Asynchronously write txn messages into table. Changes written here will be simply passed to
    /// the associated streaming task via channel, and then be materialized to storage there.
    ///
    /// Returns an oneshot channel which will be notified when the chunk is taken by some reader,
    /// and the `usize` represents the cardinality of this chunk.
    async fn write_txn_data_msg(&self, txn_msg: TxnMsg) -> Result<oneshot::Receiver<usize>> {
        assert_eq!(self.txn_id, txn_msg.txn_id());
        let (notifier_tx, notifier_rx) = oneshot::channel();
        match self.tx.send(txn_msg, notifier_tx).await {
            Ok(_) => Ok(notifier_rx),

            // It's possible that the source executor is scaled in or migrated, so the channel
            // is closed. To guarantee the transactional atomicity, bail out.
            Err(_) => Err(DmlError::ReaderClosed),
        }
    }

    /// Same as the `write_txn_data_msg`, but it is not an async function and send control message
    /// without permit acquiring.
    fn write_txn_control_msg(&self, txn_msg: TxnMsg) -> Result<oneshot::Receiver<usize>> {
        assert_eq!(self.txn_id, txn_msg.txn_id());
        let (notifier_tx, notifier_rx) = oneshot::channel();
        match self.tx.send_immediate(txn_msg, notifier_tx) {
            Ok(_) => Ok(notifier_rx),

            // It's possible that the source executor is scaled in or migrated, so the channel
            // is closed. To guarantee the transactional atomicity, bail out.
            Err(_) => Err(DmlError::ReaderClosed),
        }
    }
}

/// [`TableStreamReader`] reads changes from a certain table continuously.
/// This struct should be only used for associated materialize task, thus the reader should be
/// created only once. Further streaming task relying on this table source should follow the
/// structure of "`MView` on `MView`".
#[derive(Debug)]
pub struct TableStreamReader {
    /// The receiver of the changes channel.
    rx: Receiver,
}

impl TableStreamReader {
    #[try_stream(boxed, ok = StreamChunk, error = DmlError)]
    pub async fn into_data_stream_for_test(mut self) {
        while let Some((txn_msg, notifier)) = self.rx.recv().await {
            // Notify about that we've taken the chunk.
            match txn_msg {
                TxnMsg::Begin(_) | TxnMsg::End(_) | TxnMsg::Rollback(_) => {
                    _ = notifier.send(0);
                }
                TxnMsg::Data(_, chunk) => {
                    _ = notifier.send(chunk.cardinality());
                    yield chunk;
                }
            }
        }
    }

    #[try_stream(boxed, ok = TxnMsg, error = DmlError)]
    pub async fn into_stream(mut self) {
        while let Some((txn_msg, notifier)) = self.rx.recv().await {
            // Notify about that we've taken the chunk.
            match &txn_msg {
                TxnMsg::Begin(_) | TxnMsg::End(_) | TxnMsg::Rollback(_) => {
                    _ = notifier.send(0);
                    yield txn_msg;
                }
                TxnMsg::Data(_, chunk) => {
                    _ = notifier.send(chunk.cardinality());
                    yield txn_msg;
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use assert_matches::assert_matches;
    use futures::StreamExt;
    use itertools::Itertools;
    use risingwave_common::array::{Array, I64Array, Op};
    use risingwave_common::catalog::ColumnId;
    use risingwave_common::types::DataType;

    use super::*;

    const TEST_TRANSACTION_ID: TxnId = 0;
    const TEST_SESSION_ID: u32 = 0;

    fn new_table_dml_handle() -> TableDmlHandle {
        TableDmlHandle::new(
            vec![ColumnDesc::unnamed(ColumnId::from(0), DataType::Int64)],
            32768,
        )
    }

    #[tokio::test]
    async fn test_table_dml_handle() -> Result<()> {
        let table_dml_handle = Arc::new(new_table_dml_handle());
        let mut reader = table_dml_handle.stream_reader().into_stream();
        let mut write_handle = table_dml_handle
            .write_handle(TEST_SESSION_ID, TEST_TRANSACTION_ID)
            .unwrap();
        write_handle.begin().unwrap();

        assert_matches!(reader.next().await.unwrap()?, TxnMsg::Begin(_));

        macro_rules! write_chunk {
            ($i:expr) => {{
                let chunk =
                    StreamChunk::new(vec![Op::Insert], vec![I64Array::from_iter([$i]).into_ref()]);
                write_handle.write_chunk(chunk).await.unwrap();
            }};
        }

        write_chunk!(0);

        macro_rules! check_next_chunk {
            ($i: expr) => {
                assert_matches!(reader.next().await.unwrap()?, txn_msg => {
                    let chunk = txn_msg.as_stream_chunk().unwrap();
                    assert_eq!(chunk.columns()[0].as_int64().iter().collect_vec(), vec![Some($i)]);
                });
            }
        }

        check_next_chunk!(0);

        write_chunk!(1);
        check_next_chunk!(1);

        // Since the end will wait the notifier which is sent by the reader,
        // we need to spawn a task here to avoid dead lock.
        tokio::spawn(async move {
            write_handle.end().await.unwrap();
        });

        assert_matches!(reader.next().await.unwrap()?, TxnMsg::End(_));

        Ok(())
    }

    #[tokio::test]
    async fn test_write_handle_rollback_on_drop() -> Result<()> {
        let table_dml_handle = Arc::new(new_table_dml_handle());
        let mut reader = table_dml_handle.stream_reader().into_stream();
        let mut write_handle = table_dml_handle
            .write_handle(TEST_SESSION_ID, TEST_TRANSACTION_ID)
            .unwrap();
        write_handle.begin().unwrap();

        assert_matches!(reader.next().await.unwrap()?, TxnMsg::Begin(_));

        let chunk = StreamChunk::new(vec![Op::Insert], vec![I64Array::from_iter([1]).into_ref()]);
        write_handle.write_chunk(chunk).await.unwrap();

        assert_matches!(reader.next().await.unwrap()?, txn_msg => {
            let chunk = txn_msg.as_stream_chunk().unwrap();
            assert_eq!(chunk.columns()[0].as_int64().iter().collect_vec(), vec![Some(1)]);
        });

        // Rollback on drop
        drop(write_handle);
        assert_matches!(reader.next().await.unwrap()?, TxnMsg::Rollback(_));

        Ok(())
    }
}