risingwave_expr/expr/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Expressions in RisingWave.
//!
//! All expressions are implemented under the [`Expression`] trait.
//!
//! ## Construction
//!
//! Expressions can be constructed by [`build_func()`] function, which returns a
//! [`BoxedExpression`].
//!
//! They can also be transformed from the prost [`ExprNode`] using the [`build_from_prost()`]
//! function.
//!
//! ## Evaluation
//!
//! Expressions can be evaluated using the [`eval`] function.
//!
//! [`ExprNode`]: risingwave_pb::expr::ExprNode
//! [`eval`]: Expression::eval
// These modules define concrete expression structures.
mod and_or;
mod expr_input_ref;
mod expr_literal;
mod expr_some_all;
pub(crate) mod expr_udf;
pub(crate) mod wrapper;
mod build;
pub mod test_utils;
mod value;
use futures_util::TryFutureExt;
use risingwave_common::array::{ArrayRef, DataChunk};
use risingwave_common::row::OwnedRow;
use risingwave_common::types::{DataType, Datum};
pub use self::build::*;
pub use self::expr_input_ref::InputRefExpression;
pub use self::expr_literal::LiteralExpression;
pub use self::value::{ValueImpl, ValueRef};
pub use self::wrapper::*;
pub use super::{ExprError, Result};
/// Interface of an expression.
///
/// There're two functions to evaluate an expression: `eval` and `eval_v2`, exactly one of them
/// should be implemented. Prefer calling and implementing `eval_v2` instead of `eval` if possible,
/// to gain the performance benefit of scalar expression.
#[async_trait::async_trait]
#[auto_impl::auto_impl(&, Box)]
pub trait Expression: std::fmt::Debug + Sync + Send {
/// Get the return data type.
fn return_type(&self) -> DataType;
/// Evaluate the expression in vectorized execution. Returns an array.
///
/// The default implementation calls `eval_v2` and always converts the result to an array.
async fn eval(&self, input: &DataChunk) -> Result<ArrayRef> {
let value = self.eval_v2(input).await?;
Ok(match value {
ValueImpl::Array(array) => array,
ValueImpl::Scalar { value, capacity } => {
let mut builder = self.return_type().create_array_builder(capacity);
builder.append_n(capacity, value);
builder.finish().into()
}
})
}
/// Evaluate the expression in vectorized execution. Returns a value that can be either an
/// array, or a scalar if all values in the array are the same.
///
/// The default implementation calls `eval` and puts the result into the `Array` variant.
async fn eval_v2(&self, input: &DataChunk) -> Result<ValueImpl> {
self.eval(input).map_ok(ValueImpl::Array).await
}
/// Evaluate the expression in row-based execution. Returns a nullable scalar.
async fn eval_row(&self, input: &OwnedRow) -> Result<Datum>;
/// Evaluate if the expression is constant.
fn eval_const(&self) -> Result<Datum> {
Err(ExprError::NotConstant)
}
/// Get the index if the expression is an `InputRef`.
fn input_ref_index(&self) -> Option<usize> {
None
}
}
/// An owned dynamically typed [`Expression`].
pub type BoxedExpression = Box<dyn Expression>;
/// Extension trait for boxing expressions.
///
/// This is not directly made into [`Expression`] trait because...
/// - an expression does not have to be `'static`,
/// - and for the ease of `auto_impl`.
#[easy_ext::ext(ExpressionBoxExt)]
impl<E: Expression + 'static> E {
/// Wrap the expression in a Box.
pub fn boxed(self) -> BoxedExpression {
Box::new(self)
}
}
/// An type-safe wrapper that indicates the inner expression can be evaluated in a non-strict
/// manner, i.e., developers can directly call `eval_infallible` and `eval_row_infallible` without
/// checking the result.
///
/// This is usually created by non-strict build functions like [`crate::expr::build_non_strict_from_prost`]
/// and [`crate::expr::build_func_non_strict`]. It can also be created directly by
/// [`NonStrictExpression::new_topmost`], where only the evaluation of the topmost level expression
/// node is non-strict and should be treated as a TODO.
///
/// Compared to [`crate::expr::wrapper::non_strict::NonStrict`], this is more like an indicator
/// applied on the root of an expression tree, while the latter is a wrapper that can be applied on
/// each node of the tree and actually changes the behavior. As a result, [`NonStrictExpression`]
/// does not implement [`Expression`] trait and instead deals directly with developers.
#[derive(Debug)]
pub struct NonStrictExpression<E = BoxedExpression>(E);
impl<E> NonStrictExpression<E>
where
E: Expression,
{
/// Create a non-strict expression directly wrapping the given expression.
///
/// Should only be used in tests as evaluation may panic.
pub fn for_test(inner: E) -> NonStrictExpression
where
E: 'static,
{
NonStrictExpression(inner.boxed())
}
/// Create a non-strict expression from the given expression, where only the evaluation of the
/// topmost level expression node is non-strict (which is subtly different from
/// [`crate::expr::build_non_strict_from_prost`] where every node is non-strict).
///
/// This should be used as a TODO.
pub fn new_topmost(
inner: E,
error_report: impl EvalErrorReport,
) -> NonStrictExpression<impl Expression> {
let inner = wrapper::non_strict::NonStrict::new(inner, error_report);
NonStrictExpression(inner)
}
/// Get the return data type.
pub fn return_type(&self) -> DataType {
self.0.return_type()
}
/// Evaluate the expression in vectorized execution and assert it succeeds. Returns an array.
///
/// Use with expressions built in non-strict mode.
pub async fn eval_infallible(&self, input: &DataChunk) -> ArrayRef {
self.0.eval(input).await.expect("evaluation failed")
}
/// Evaluate the expression in row-based execution and assert it succeeds. Returns a nullable
/// scalar.
///
/// Use with expressions built in non-strict mode.
pub async fn eval_row_infallible(&self, input: &OwnedRow) -> Datum {
self.0.eval_row(input).await.expect("evaluation failed")
}
/// Unwrap the inner expression.
pub fn into_inner(self) -> E {
self.0
}
/// Get a reference to the inner expression.
pub fn inner(&self) -> &E {
&self.0
}
}
/// An optional context that can be used in a function.
///
/// # Example
/// ```ignore
/// #[function("foo(int4) -> int8")]
/// fn foo(a: i32, ctx: &Context) -> i64 {
/// assert_eq!(ctx.arg_types[0], DataType::Int32);
/// assert_eq!(ctx.return_type, DataType::Int64);
/// // ...
/// }
/// ```
#[derive(Debug)]
pub struct Context {
pub arg_types: Vec<DataType>,
pub return_type: DataType,
/// Whether the function is variadic.
pub variadic: bool,
}