risingwave_expr_impl/scalar/
trigonometric.rs

1// Copyright 2025 RisingWave Labs
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15use risingwave_common::types::F64;
16use risingwave_expr::function;
17
18#[function("sin(float8) -> float8")]
19pub fn sin_f64(input: F64) -> F64 {
20    f64::sin(input.0).into()
21}
22
23#[function("cos(float8) -> float8")]
24pub fn cos_f64(input: F64) -> F64 {
25    f64::cos(input.0).into()
26}
27
28#[function("tan(float8) -> float8")]
29pub fn tan_f64(input: F64) -> F64 {
30    f64::tan(input.0).into()
31}
32
33#[function("cot(float8) -> float8")]
34pub fn cot_f64(input: F64) -> F64 {
35    let res = 1.0 / f64::tan(input.0);
36    res.into()
37}
38
39#[function("asin(float8) -> float8")]
40pub fn asin_f64(input: F64) -> F64 {
41    f64::asin(input.0).into()
42}
43
44#[function("acos(float8) -> float8")]
45pub fn acos_f64(input: F64) -> F64 {
46    f64::acos(input.0).into()
47}
48
49#[function("atan(float8) -> float8")]
50pub fn atan_f64(input: F64) -> F64 {
51    f64::atan(input.0).into()
52}
53
54#[function("atan2(float8, float8) -> float8")]
55pub fn atan2_f64(input_x: F64, input_y: F64) -> F64 {
56    input_x.0.atan2(input_y.0).into()
57}
58
59#[function("sinh(float8) -> float8")]
60pub fn sinh_f64(input: F64) -> F64 {
61    f64::sinh(input.0).into()
62}
63
64#[function("cosh(float8) -> float8")]
65pub fn cosh_f64(input: F64) -> F64 {
66    f64::cosh(input.0).into()
67}
68
69#[function("tanh(float8) -> float8")]
70pub fn tanh_f64(input: F64) -> F64 {
71    f64::tanh(input.0).into()
72}
73
74#[function("coth(float8) -> float8")]
75pub fn coth_f64(input: F64) -> F64 {
76    if input.0 == 0.0 {
77        return f64::NAN.into();
78    }
79    // https://en.wikipedia.org/wiki/Hyperbolic_functions#Exponential_definitions
80    (f64::cosh(input.0) / f64::sinh(input.0)).into()
81}
82
83#[function("asinh(float8) -> float8")]
84pub fn asinh_f64(input: F64) -> F64 {
85    f64::asinh(input.0).into()
86}
87
88#[function("acosh(float8) -> float8")]
89pub fn acosh_f64(input: F64) -> F64 {
90    f64::acosh(input.0).into()
91}
92
93#[function("atanh(float8) -> float8")]
94pub fn atanh_f64(input: F64) -> F64 {
95    f64::atanh(input.0).into()
96}
97
98static DEGREE_THIRTY: f64 = 30.0;
99static DEGREE_FORTY_FIVE: f64 = 45.0;
100static DEGREE_SIXTY: f64 = 60.0;
101static DEGREE_ONE_HALF: f64 = 0.5;
102static DEGREE_ONE: f64 = 1.0;
103static RADIANS_PER_DEGREE: f64 = 0.017_453_292_519_943_295;
104
105// Constants we use to get more accurate results.
106// Depend on the machine and have to be evaluated at runtime
107// See PSQL: https://github.com/postgres/postgres/blob/78ec02d612a9b69039ec2610740f738968fe144d/src/backend/utils/adt/float.c#L2024
108fn sind_30() -> f64 {
109    f64::sin(DEGREE_THIRTY * RADIANS_PER_DEGREE)
110}
111
112fn one_minus_cosd_60() -> f64 {
113    DEGREE_ONE - f64::cos(DEGREE_SIXTY * RADIANS_PER_DEGREE)
114}
115
116fn tand_45() -> f64 {
117    f64::tan(DEGREE_FORTY_FIVE * RADIANS_PER_DEGREE)
118}
119
120fn cotd_45() -> f64 {
121    f64::cos(DEGREE_FORTY_FIVE * RADIANS_PER_DEGREE)
122        / f64::sin(DEGREE_FORTY_FIVE * RADIANS_PER_DEGREE)
123}
124
125fn asin_0_5() -> f64 {
126    f64::asin(DEGREE_ONE_HALF)
127}
128
129fn acos_0_5() -> f64 {
130    f64::acos(DEGREE_ONE_HALF)
131}
132
133// returns the cosine of an angle that lies between 0 and 60 degrees. This will return exactly 1
134// when xi s 0, and exactly 0.5 when x is 60 degrees.
135fn cosd_0_to_60(x: f64) -> f64 {
136    // https://github.com/postgres/postgres/blob/REL_15_2/src/backend/utils/adt/float.c
137    let one_minus_cos_x: f64 = 1.0 - f64::cos(x * RADIANS_PER_DEGREE);
138    1.0 - (one_minus_cos_x / one_minus_cosd_60()) / 2.0
139}
140
141// returns the sine of an angle that lies between 0 and 30 degrees. This will return exactly 0 when
142// x is 0, and exactly 0.5 when x is 30 degrees.
143fn sind_0_to_30(x: f64) -> f64 {
144    // https://github.com/postgres/postgres/blob/REL_15_2/src/backend/utils/adt/float.c
145    let sin_x = f64::sin(x * RADIANS_PER_DEGREE);
146    (sin_x / sind_30()) / 2.0
147}
148
149// returns the cosine of an angle in the first quadrant (0 to 90 degrees).
150fn cosd_q1(x: f64) -> f64 {
151    // https://github.com/postgres/postgres/blob/REL_15_2/src/backend/utils/adt/float.c
152    // Stitch together the sine and cosine functions for the ranges [0, 60]
153    // and (60, 90].  These guarantee to return exact answers at their
154    // endpoints, so the overall result is a continuous monotonic function
155    // that gives exact results when x = 0, 60 and 90 degrees.
156    if x <= 60.0 {
157        cosd_0_to_60(x)
158    } else {
159        sind_0_to_30(90.0 - x)
160    }
161}
162
163#[function("cosd(float8) -> float8")]
164pub fn cosd_f64(input: F64) -> F64 {
165    // See PSQL implementation: https://github.com/postgres/postgres/blob/78ec02d612a9b69039ec2610740f738968fe144d/src/backend/utils/adt/float.c
166    let arg1 = input.0;
167
168    // Return NaN if input is NaN or Infinite. Slightly different from PSQL implementation
169    if input.0.is_nan() || input.0.is_infinite() {
170        return F64::from(f64::NAN);
171    }
172
173    // Reduce the range of the input to [0,90] degrees
174    let mut sign = 1.0;
175    let mut arg1 = arg1 % 360.0;
176
177    if arg1 < 0.0 {
178        // cosd(-x) = cosd(x)
179        arg1 = -arg1;
180    }
181    if arg1 > 180.0 {
182        // cosd(360-x) = cosd(x)
183        arg1 = 360.0 - arg1;
184    }
185    if arg1 > 90.0 {
186        // cosd(180-x) = -cosd(x)
187        arg1 = 180.0 - arg1;
188        sign = -sign;
189    }
190
191    let result: f64 = sign * cosd_q1(arg1);
192
193    if result.is_infinite() {
194        return F64::from(f64::NAN);
195    }
196
197    result.into()
198}
199
200// Returns the sine of an angle in the first quadrant (0 to 90 degrees).
201fn sind_q1(input: f64) -> f64 {
202    // https://github.com/postgres/postgres/blob/REL_15_2/src/backend/utils/adt/float.c
203
204    //  Stitch together the sine and cosine functions for the ranges [0, 30]
205    //  and (30, 90].  These guarantee to return exact answers at their
206    //  endpoints, so the overall result is a continuous monotonic function
207    //  that gives exact results when x = 0, 30 and 90 degrees.
208
209    if input <= 30.0 {
210        sind_0_to_30(input)
211    } else {
212        cosd_0_to_60(90.0 - input)
213    }
214}
215
216#[function("sind(float8) -> float8")]
217pub fn sind_f64(input: F64) -> F64 {
218    // PSQL implementation: https://github.com/postgres/postgres/blob/REL_15_2/src/backend/utils/adt/float.c#L2444
219
220    // Returns NaN if input is NaN or infinite. Different from PSQL implementation.
221    if input.0.is_nan() || input.0.is_infinite() {
222        return f64::NAN.into();
223    }
224
225    let mut arg1 = input.0 % 360.0;
226    let mut sign = 1.0;
227
228    if arg1 < 0.0 {
229        // sind(-x) = -sind(x)
230        arg1 = -arg1;
231        sign = -sign;
232    }
233    if arg1 > 180.0 {
234        //  sind(360-x) = -sind(x)
235        arg1 = 360.0 - arg1;
236        sign = -sign;
237    }
238    if arg1 > 90.0 {
239        //  sind(180-x) = sind(x)
240        arg1 = 180.0 - arg1;
241    }
242
243    let result = sign * sind_q1(arg1);
244
245    if result.is_infinite() {
246        // Different from PSQL implementation.
247        f64::NAN.into()
248    } else {
249        result.into()
250    }
251}
252
253#[function("cotd(float8) -> float8")]
254pub fn cotd_f64(input: F64) -> F64 {
255    // PSQL implementation: https://github.com/postgres/postgres/blob/78ec02d612a9b69039ec2610740f738968fe144d/src/backend/utils/adt/float.c#L2378
256
257    // Returns NaN if input is NaN or infinite. Different from PSQL implementation.
258    if input.0.is_nan() || input.0.is_infinite() {
259        return f64::NAN.into();
260    }
261
262    let mut arg1 = input.0 % 360.0;
263    let mut sign = 1.0;
264
265    // hardcoding exact results.
266    if arg1 == 45.0 {
267        return F64::from(1.0);
268    }
269    if arg1 == 135.0 {
270        return F64::from(-1.0);
271    }
272    if arg1 == 225. {
273        return F64::from(1.0);
274    }
275    if arg1 == 315.0 {
276        return F64::from(-1.0);
277    }
278
279    if arg1 < 0.0 {
280        // cotd(-x) = -cotd(x)
281        arg1 = -arg1;
282        sign = -sign;
283    }
284
285    if arg1 > 180.0 {
286        // cotd(360-x) = -cotd(x)
287        arg1 = 360.0 - arg1;
288        sign = -sign;
289    }
290
291    if arg1 > 90.0 {
292        // cotd(180-x) = -cotd(x)
293        arg1 = 180.0 - arg1;
294        sign = -sign;
295    }
296
297    let cot_arg1 = cosd_q1(arg1) / sind_q1(arg1);
298    let result = sign * (cot_arg1 / cotd_45());
299
300    // On some machines we get cotd(270) = minus zero, but this isn't always
301    // true. For portability, and because the user constituency for this
302    // function probably doesn't want minus zero, force it to plain zero.
303    let result = if result == 0.0 { 0.0 } else { result };
304    // Not checking for overflow because cotd(0) == Inf
305    result.into()
306}
307
308#[function("tand(float8) -> float8")]
309pub fn tand_f64(input: F64) -> F64 {
310    // PSQL implementation: https://github.com/postgres/postgres/blob/REL_15_2/src/backend/utils/adt/float.c
311    // Returns NaN if input is NaN or infinite. Different from PSQL implementation.
312    if input.0.is_nan() || input.0.is_infinite() {
313        return f64::NAN.into();
314    }
315
316    let mut arg1 = input.0 % 360.0;
317    let mut sign = 1.0;
318
319    // hardcoding exact results.
320    if arg1 == 45.0 {
321        return F64::from(1.0);
322    }
323    if arg1 == 135.0 {
324        return F64::from(-1.0);
325    }
326    if arg1 == 225. {
327        return F64::from(1.0);
328    }
329    if arg1 == 315.0 {
330        return F64::from(-1.0);
331    }
332
333    if arg1 < 0.0 {
334        // tand(-x) = -tand(x)
335        arg1 = -arg1;
336        sign = -sign;
337    }
338
339    if arg1 > 180.0 {
340        // tand(360-x) = -tand(x)
341        arg1 = 360.0 - arg1;
342        sign = -sign;
343    }
344
345    if arg1 > 90.0 {
346        // tand(180-x) = -tand(x)
347        arg1 = 180.0 - arg1;
348        sign = -sign;
349    }
350
351    let tan_arg1 = sind_q1(arg1) / cosd_q1(arg1);
352    let result = sign * (tan_arg1 / tand_45());
353
354    // On some machines we get tand(180) = minus zero, but this isn't always true. For portability,
355    // and because the user constituency for this function probably doesn't want minus zero, force
356    // it to plain zero.
357    let result = if result == 0.0 { 0.0 } else { result };
358    result.into()
359}
360
361// returns the inverse sine of x in degrees, for x in the range [0,
362// 1].  The result is an angle in the first quadrant --- [0, 90] degrees.
363// For the 3 special case inputs (0, 0.5 and 1), this function will return exact values (0, 30 and
364// 90 degrees respectively).
365pub fn asind_q1(x: f64) -> f64 {
366    // Stitch together inverse sine and cosine functions for the ranges [0,0.5] and (0.5, 1]. Each
367    // expression below is guaranteed to returnexactly 30 for x=0.5, so the result is a continuous
368    // monotonic functionover the full range.
369    if x <= 0.5 {
370        let asin_x = f64::asin(x);
371        return (asin_x / asin_0_5()) * 30.0;
372    }
373
374    let acos_x = f64::acos(x);
375    90.0 - (acos_x / acos_0_5()) * 60.0
376}
377
378#[function("asind(float8) -> float8")]
379pub fn asind_f64(input: F64) -> F64 {
380    let arg1 = input.0;
381
382    // Return NaN if input is NaN or Infinite. Slightly different from PSQL implementation
383    if input.0.is_nan() || input.0.is_infinite() {
384        return F64::from(f64::NAN);
385    }
386
387    // Return NaN if input is out of range. Slightly different from PSQL implementation
388    if !(-1.0..=1.0).contains(&arg1) {
389        return F64::from(f64::NAN);
390    }
391
392    let result = if arg1 >= 0.0 {
393        asind_q1(arg1)
394    } else {
395        -asind_q1(-arg1)
396    };
397
398    if result.is_infinite() {
399        return F64::from(f64::NAN);
400    }
401    result.into()
402}
403
404// returns the inverse cosine of x in degrees, for x in the range [0, 1].  The result is an angle in
405// the first quadrant --- [0, 90] degrees. For the 3 special case inputs (0, 0.5 and 1), this
406// function will return exact values (0, 60 and 90 degrees respectively).
407fn acosd_q1(x: f64) -> f64 {
408    // Stitch together inverse sine and cosine functions for the ranges [0, 0.5] and (0.5, 1].  Each
409    // expression below is guaranteed to return exactly 60 for x=0.5, so the result is a continuous
410    // monotonic function over the full range.
411    if x <= 0.5 {
412        let asin_x = f64::asin(x);
413        return 90.0 - (asin_x / asin_0_5()) * 30.0;
414    }
415    let acos_x = f64::acos(x);
416    (acos_x / acos_0_5()) * 60.0
417}
418
419#[function("acosd(float8) -> float8")]
420pub fn acosd_f64(input: F64) -> F64 {
421    let arg1 = input.0;
422
423    // Return NaN if input is NaN or Infinite. Slightly different from PSQL implementation
424    if input.0.is_nan() || input.0.is_infinite() || !(-1.0..=1.0).contains(&arg1) {
425        return F64::from(f64::NAN);
426    }
427
428    let result = if arg1 >= 0.0 {
429        acosd_q1(arg1)
430    } else {
431        90.0 + asind_q1(-arg1)
432    };
433
434    if result.is_infinite() {
435        return F64::from(f64::NAN);
436    }
437    result.into()
438}
439
440// return the inverse tangent of x in degrees, the inverse tangent function maps all inputs to
441// values in the range [-90, 90]. For the 5 special case inputs (0, 1, -1, +INF and -INF), this
442// function will return exact values (0, 45, -45, 90 and -90 degrees respectively).
443#[function("atand(float8) -> float8")]
444pub fn atand_f64(input: F64) -> F64 {
445    let arg1 = input.0;
446    if arg1.is_nan() {
447        return F64::from(f64::NAN);
448    }
449    let atan_arg1 = f64::atan(arg1);
450    let result = (atan_arg1 / f64::atan(DEGREE_ONE)) * 45.0;
451    if result.is_infinite() {
452        return F64::from(f64::NAN);
453    }
454    result.into()
455}
456
457/// Inverse tangent of y/x, result in degrees, the inverse tangent of y/x maps all inputs to
458/// values in the range [-180, 180].
459#[function("atan2d(float8, float8) -> float8")]
460pub fn atan2d_f64(input_x: F64, input_y: F64) -> F64 {
461    let (arg1, arg2) = (input_x.0, input_y.0);
462    if arg1.is_nan() || arg2.is_nan() {
463        return F64::from(f64::NAN);
464    }
465    let atan2_arg1_arg2 = f64::atan2(arg1, arg2);
466    let result = (atan2_arg1_arg2 / f64::atan(DEGREE_ONE)) * 45.0;
467    if result.is_infinite() {
468        return F64::from(f64::NAN);
469    }
470    result.into()
471}
472
473#[function("degrees(float8) -> float8")]
474pub fn degrees_f64(input: F64) -> F64 {
475    input.0.to_degrees().into()
476}
477
478#[function("radians(float8) -> float8")]
479pub fn radians_f64(input: F64) -> F64 {
480    input.0.to_radians().into()
481}
482
483#[cfg(test)]
484mod tests {
485    use risingwave_common::types::FloatExt;
486
487    use crate::scalar::trigonometric::*;
488
489    fn precision() -> f64 {
490        1e-12
491    }
492
493    /// numbers are equal within a rounding error
494    fn assert_similar(lhs: F64, rhs: F64) {
495        if lhs == F64::from(f64::NAN) && rhs == F64::from(f64::NAN) {
496            return;
497        }
498        let x = (lhs.0 - rhs.0).abs() <= precision();
499        assert!(
500            x,
501            "{:?} != {:?}. Required precision is {:?}",
502            lhs.0,
503            rhs.0,
504            precision()
505        );
506    }
507
508    #[test]
509    fn test_degrees() {
510        let d = F64::from(180);
511        let pi = F64::from(core::f64::consts::PI);
512
513        // sind
514        assert_similar(sin_f64(50_f64.to_radians().into()), sind_f64(F64::from(50)));
515        assert_similar(
516            sin_f64(100_f64.to_radians().into()),
517            sind_f64(F64::from(100)),
518        );
519        assert_similar(
520            sin_f64(250_f64.to_radians().into()),
521            sind_f64(F64::from(250)),
522        );
523        assert_similar(sin_f64(pi), sind_f64(d));
524
525        // exact matches
526        assert_eq!(sind_f64(F64::from(30)).0, 0.5);
527        assert_eq!(sind_f64(F64::from(90)).0, 1.0);
528        assert_eq!(sind_f64(F64::from(180)).0, 0.0);
529        assert_eq!(sind_f64(F64::from(270)).0, -1.0);
530
531        // cosd
532        assert_eq!(cos_f64(pi), cosd_f64(d));
533        assert_similar(
534            cos_f64((-180_f64).to_radians().into()),
535            cosd_f64(F64::from(-180)),
536        );
537        assert_similar(
538            cos_f64((-190_f64).to_radians().into()),
539            cosd_f64(F64::from(-190)),
540        );
541        assert_similar(cos_f64(50_f64.to_radians().into()), cosd_f64(F64::from(50)));
542        assert_similar(
543            cos_f64(100_f64.to_radians().into()),
544            cosd_f64(F64::from(100)),
545        );
546        assert_similar(
547            cos_f64(250_f64.to_radians().into()),
548            cosd_f64(F64::from(250)),
549        );
550
551        // exact matches
552        assert_eq!(cosd_f64(F64::from(0)).0, 1.0);
553        assert_eq!(cosd_f64(F64::from(90)).0, 0.0);
554
555        // cotd
556        assert_eq!(F64::from(-f64::INFINITY), cotd_f64(d));
557        assert!(cotd_f64(F64::from(-180)).is_infinite());
558        assert!(
559            (cotd_f64(F64::from(-190)) + F64::from(5.671281819617705))
560                .abs()
561                .0
562                <= precision(),
563        );
564        assert_similar(cot_f64(50_f64.to_radians().into()), cotd_f64(F64::from(50)));
565        assert_similar(
566            cot_f64(100_f64.to_radians().into()),
567            cotd_f64(F64::from(100)),
568        );
569        assert_similar(
570            cot_f64(250_f64.to_radians().into()),
571            cotd_f64(F64::from(250)),
572        );
573
574        // tand
575        assert_similar(
576            tan_f64((-10_f64).to_radians().into()),
577            tand_f64(F64::from(-10)),
578        );
579        assert_similar(tan_f64(50_f64.to_radians().into()), tand_f64(F64::from(50)));
580        assert!(
581            (tan_f64(250_f64.to_radians().into()) - tand_f64(F64::from(250)))
582                .0
583                .abs()
584                < precision()
585        );
586        assert_similar(
587            tan_f64(360_f64.to_radians().into()),
588            tand_f64(F64::from(360)),
589        );
590
591        // asind
592        assert_similar(asind_f64(F64::from(-1)), F64::from(-90));
593        assert_similar(asind_f64(F64::from(-0.5)), F64::from(-30));
594        assert_similar(asind_f64(F64::from(0)), F64::from(0));
595        assert_similar(asind_f64(F64::from(0.5)), F64::from(30));
596        assert_similar(asind_f64(F64::from(0.75)), F64::from(48.590377890729));
597        assert_similar(asind_f64(F64::from(1)), F64::from(90));
598
599        // acosd
600        assert_eq!(acosd_f64(F64::from(-1)), F64::from(180));
601        assert_similar(acosd_f64(F64::from(-0.75)), F64::from(138.59037789072914));
602        assert_eq!(acosd_f64(F64::from(-0.5)), F64::from(120));
603        assert_eq!(acosd_f64(F64::from(0.0)), F64::from(90));
604        assert_eq!(acosd_f64(F64::from(0.5)), F64::from(60));
605        assert_eq!(acosd_f64(F64::from(1)), F64::from(0));
606
607        // exact matches
608        assert!(tand_f64(F64::from(-270)).0.is_infinite());
609        assert_eq!(tand_f64(F64::from(-180)), 0.0);
610        assert_eq!(tand_f64(F64::from(180)), 0.0);
611        assert!(tand_f64(F64::from(-90)).0.is_infinite());
612        assert!(tand_f64(F64::from(90)).0.is_infinite());
613        assert!(tand_f64(F64::from(270)).0.is_infinite());
614        assert!(tand_f64(F64::from(450)).0.is_infinite());
615        assert!(tand_f64(F64::from(90)).0.is_infinite());
616    }
617
618    #[test]
619    fn test_trigonometric_funcs() {
620        // from https://en.wikipedia.org/wiki/Trigonometric_functions#Sum_and_difference_formulas
621        let x = F64::from(1);
622        let y = F64::from(3);
623        let one = F64::from(1);
624        assert_similar(
625            sin_f64(x + y),
626            sin_f64(x) * cos_f64(y) + cos_f64(x) * sin_f64(y),
627        );
628        assert_similar(
629            cos_f64(x + y),
630            cos_f64(x) * cos_f64(y) - sin_f64(x) * sin_f64(y),
631        );
632        assert_similar(
633            tan_f64(x + y),
634            (tan_f64(x) + tan_f64(y)) / (one - tan_f64(x) * tan_f64(y)),
635        );
636    }
637
638    #[test]
639    fn test_inverse_trigonometric_funcs() {
640        let x = F64::from(1);
641        let y = F64::from(3);
642        let two = F64::from(2);
643        // https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Relationships_between_trigonometric_functions_and_inverse_trigonometric_functions
644        assert_similar(x, sin_f64(asin_f64(x)));
645        assert_similar(x, cos_f64(acos_f64(x)));
646        assert_similar(x, tan_f64(atan_f64(x)));
647
648        // https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Two-argument_variant_of_arctangent
649        assert_similar(
650            atan2_f64(y, x),
651            two * atan_f64(y / (F64::from((x.0.powi(2) + y.0.powi(2)).sqrt()) + x)),
652        )
653    }
654
655    #[test]
656    fn test_degrees_and_radians() {
657        let full_angle = F64::from(360);
658        let tau = F64::from(std::f64::consts::TAU);
659        assert_similar(degrees_f64(tau), full_angle);
660        assert_similar(radians_f64(full_angle), tau);
661
662        let straight_angle = F64::from(180);
663        let pi = F64::from(std::f64::consts::PI);
664        assert_similar(degrees_f64(pi), straight_angle);
665        assert_similar(radians_f64(straight_angle), pi);
666
667        let right_angle = F64::from(90);
668        let half_pi = F64::from(std::f64::consts::PI / 2.);
669        assert_similar(degrees_f64(half_pi), right_angle);
670        assert_similar(radians_f64(right_angle), half_pi);
671
672        let zero = F64::from(0);
673        assert_similar(degrees_f64(zero), zero);
674        assert_similar(radians_f64(zero), zero);
675    }
676
677    #[test]
678    fn test_hyperbolic_trigonometric_funcs() {
679        let two = F64::from(2);
680        let one = F64::from(1);
681        let x = F64::from(5);
682        let y = F64::from(3);
683        // https://en.wikipedia.org/wiki/Hyperbolic_functions#Sums_of_arguments
684        assert_similar(
685            sinh_f64(x + y),
686            sinh_f64(x) * cosh_f64(y) + cosh_f64(x) * sinh_f64(y),
687        );
688        assert_similar(
689            cosh_f64(x + y),
690            cosh_f64(x) * cosh_f64(y) + sinh_f64(x) * sinh_f64(y),
691        );
692        assert_similar(
693            tanh_f64(x + y),
694            (tanh_f64(x) + tanh_f64(y)) / (one + tanh_f64(x) * tanh_f64(y)),
695        );
696        // https://en.wikipedia.org/wiki/Hyperbolic_functions#Useful_relations
697        assert_similar(coth_f64(-x), -coth_f64(x));
698        assert_similar(tanh_f64(-x), -tanh_f64(x));
699        // https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#Other_identities
700        assert_similar(two * acosh_f64(x), acosh_f64(two * x.powi(2) - one)); // for x >= 1
701        assert_similar(two * asinh_f64(x), acosh_f64(two * x.powi(2) + one)); // for x >= 0
702
703        let x = x.powi(2).0;
704
705        assert_similar(
706            asinh_f64(F64::from(x.powi(2) - 1.0) / (two * x)),
707            atanh_f64(F64::from(x.powi(2) - 1.0) / F64::from(x.powi(2) + 1.0)),
708        );
709    }
710
711    #[test]
712    fn test_exact() {
713        assert_eq!(cotd_f64(F64::from(135.0)).0, -1.0);
714        assert_eq!(cotd_f64(F64::from(225.0)).0, 1.0);
715        assert_eq!(cotd_f64(F64::from(315.0)).0, -1.0);
716        assert_eq!(cotd_f64(F64::from(45.0)).0, 1.0);
717        assert_eq!(tand_f64(F64::from(45.0)).0, 1.0);
718        assert_eq!(tand_f64(F64::from(135.0)).0, -1.0);
719        assert_eq!(tand_f64(F64::from(225.0)).0, 1.0);
720        assert_eq!(tand_f64(F64::from(315.0)).0, -1.0);
721    }
722}