risingwave_expr_macro/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![feature(let_chains)]
use std::vec;
use context::{generate_captured_function, CaptureContextAttr, DefineContextAttr};
use proc_macro::TokenStream;
use proc_macro2::TokenStream as TokenStream2;
use syn::{Error, ItemFn, Result};
mod context;
mod gen;
mod parse;
mod types;
mod utils;
/// Defining the RisingWave SQL function from a Rust function.
///
/// [Online version of this doc.](https://risingwavelabs.github.io/risingwave/rustdoc/risingwave_expr_macro/attr.function.html)
///
/// # Table of Contents
///
/// - [SQL Function Signature](#sql-function-signature)
/// - [Multiple Function Definitions](#multiple-function-definitions)
/// - [Type Expansion](#type-expansion)
/// - [Automatic Type Inference](#automatic-type-inference)
/// - [Custom Type Inference Function](#custom-type-inference-function)
/// - [Rust Function Signature](#rust-function-signature)
/// - [Nullable Arguments](#nullable-arguments)
/// - [Return Value](#return-value)
/// - [Variadic Function](#variadic-function)
/// - [Optimization](#optimization)
/// - [Functions Returning Strings](#functions-returning-strings)
/// - [Preprocessing Constant Arguments](#preprocessing-constant-arguments)
/// - [Context](#context)
/// - [Async Function](#async-function)
/// - [Table Function](#table-function)
/// - [Registration and Invocation](#registration-and-invocation)
/// - [Appendix: Type Matrix](#appendix-type-matrix)
///
/// The following example demonstrates a simple usage:
///
/// ```ignore
/// #[function("add(int32, int32) -> int32")]
/// fn add(x: i32, y: i32) -> i32 {
/// x + y
/// }
/// ```
///
/// # SQL Function Signature
///
/// Each function must have a signature, specified in the `function("...")` part of the macro
/// invocation. The signature follows this pattern:
///
/// ```text
/// name ( [arg_types],* [...] ) [ -> [setof] return_type ]
/// ```
///
/// Where `name` is the function name in `snake_case`, which must match the function name (in `UPPER_CASE`) defined
/// in `proto/expr.proto`.
///
/// `arg_types` is a comma-separated list of argument types. The allowed data types are listed in
/// in the `name` column of the appendix's [type matrix]. Wildcards or `auto` can also be used, as
/// explained below. If the function is variadic, the last argument can be denoted as `...`.
///
/// When `setof` appears before the return type, this indicates that the function is a set-returning
/// function (table function), meaning it can return multiple values instead of just one. For more
/// details, see the section on table functions.
///
/// If no return type is specified, the function returns `void`. However, the void type is not
/// supported in our type system, so it now returns a null value of type int.
///
/// ## Multiple Function Definitions
///
/// Multiple `#[function]` macros can be applied to a single generic Rust function to define
/// multiple SQL functions of different types. For example:
///
/// ```ignore
/// #[function("add(int16, int16) -> int16")]
/// #[function("add(int32, int32) -> int32")]
/// #[function("add(int64, int64) -> int64")]
/// fn add<T: Add>(x: T, y: T) -> T {
/// x + y
/// }
/// ```
///
/// ## Type Expansion with `*`
///
/// Types can be automatically expanded to multiple types using wildcards. Here are some examples:
///
/// - `*`: expands to all types.
/// - `*int`: expands to int16, int32, int64.
/// - `*float`: expands to float32, float64.
///
/// For instance, `#[function("cast(varchar) -> *int")]` will be expanded to the following three
/// functions:
///
/// ```ignore
/// #[function("cast(varchar) -> int16")]
/// #[function("cast(varchar) -> int32")]
/// #[function("cast(varchar) -> int64")]
/// ```
///
/// Please note the difference between `*` and `any`: `*` will generate a function for each type,
/// whereas `any` will only generate one function with a dynamic data type `Scalar`.
/// This is similar to `impl T` and `dyn T` in Rust. The performance of using `*` would be much better than `any`.
/// But we do not always prefer `*` due to better performance. In some cases, using `any` is more convenient.
/// For example, in array functions, the element type of `ListValue` is `Scalar(Ref)Impl`.
/// It is unnecessary to convert it from/into various `T`.
///
/// ## Automatic Type Inference with `auto`
///
/// Correspondingly, the return type can be denoted as `auto` to be automatically inferred based on
/// the input types. It will be inferred as the _smallest type_ that can accommodate all input types.
///
/// For example, `#[function("add(*int, *int) -> auto")]` will be expanded to:
///
/// ```ignore
/// #[function("add(int16, int16) -> int16")]
/// #[function("add(int16, int32) -> int32")]
/// #[function("add(int16, int64) -> int64")]
/// #[function("add(int32, int16) -> int32")]
/// ...
/// ```
///
/// Especially when there is only one input argument, `auto` will be inferred as the type of that
/// argument. For example, `#[function("neg(*int) -> auto")]` will be expanded to:
///
/// ```ignore
/// #[function("neg(int16) -> int16")]
/// #[function("neg(int32) -> int32")]
/// #[function("neg(int64) -> int64")]
/// ```
///
/// ## Custom Type Inference Function with `type_infer`
///
/// A few functions might have a return type that dynamically changes based on the input argument
/// types, such as `unnest`. This is mainly for composite types like `anyarray`, `struct`, and `anymap`.
///
/// In such cases, the `type_infer` option can be used to specify a function to infer the return
/// type based on the input argument types. Its function signature is
///
/// ```ignore
/// fn(&[DataType]) -> Result<DataType>
/// ```
///
/// For example:
///
/// ```ignore
/// #[function(
/// "unnest(anyarray) -> setof any",
/// type_infer = "|args| Ok(args[0].unnest_list())"
/// )]
/// ```
///
/// This type inference function will be invoked at the frontend (`infer_type_with_sigmap`).
///
/// # Rust Function Signature
///
/// The `#[function]` macro can handle various types of Rust functions.
///
/// Each argument corresponds to the *reference type* in the [type matrix].
///
/// The return value type can be the *reference type* or *owned type* in the [type matrix].
///
/// For instance:
///
/// ```ignore
/// #[function("trim_array(anyarray, int32) -> anyarray")]
/// fn trim_array(array: ListRef<'_>, n: i32) -> ListValue {...}
/// ```
///
/// ## Nullable Arguments
///
/// The functions above will only be called when all arguments are not null.
/// It will return null if any argument is null.
/// If null arguments need to be considered, the `Option` type can be used:
///
/// ```ignore
/// #[function("trim_array(anyarray, int32) -> anyarray")]
/// fn trim_array(array: ListRef<'_>, n: Option<i32>) -> ListValue {...}
/// ```
///
/// This function will be called when `n` is null, but not when `array` is null.
///
/// ## Return `NULL`s and Errors
///
/// Similarly, the return value type can be one of the following:
///
/// - `T`: Indicates that a non-null value is always returned (for non-null inputs), and errors will not occur.
/// - `Option<T>`: Indicates that a null value may be returned, but errors will not occur.
/// - `Result<T>`: Indicates that an error may occur, but a null value will not be returned.
/// - `Result<Option<T>>`: Indicates that a null value may be returned, and an error may also occur.
///
/// ## Optimization
///
/// When all input and output types of the function are *primitive type* (refer to the [type
/// matrix]) and do not contain any Option or Result, the `#[function]` macro will automatically
/// generate SIMD vectorized execution code.
///
/// Therefore, try to avoid returning `Option` and `Result` whenever possible.
///
/// ## Variadic Function
///
/// Variadic functions accept a `impl Row` input to represent tailing arguments.
/// For example:
///
/// ```ignore
/// #[function("concat_ws(varchar, ...) -> varchar")]
/// fn concat_ws(sep: &str, vals: impl Row) -> Option<Box<str>> {
/// let mut string_iter = vals.iter().flatten();
/// // ...
/// }
/// ```
///
/// See `risingwave_common::row::Row` for more details.
///
/// ## Functions Returning Strings
///
/// For functions that return varchar types, you can also use the writer style function signature to
/// avoid memory copying and dynamic memory allocation:
///
/// ```ignore
/// #[function("trim(varchar) -> varchar")]
/// fn trim(s: &str, writer: &mut impl Write) {
/// writer.write_str(s.trim()).unwrap();
/// }
/// ```
///
/// If errors may be returned, then the return value should be `Result<()>`:
///
/// ```ignore
/// #[function("trim(varchar) -> varchar")]
/// fn trim(s: &str, writer: &mut impl Write) -> Result<()> {
/// writer.write_str(s.trim()).unwrap();
/// Ok(())
/// }
/// ```
///
/// If null values may be returned, then the return value should be `Option<()>`:
///
/// ```ignore
/// #[function("trim(varchar) -> varchar")]
/// fn trim(s: &str, writer: &mut impl Write) -> Option<()> {
/// if s.is_empty() {
/// None
/// } else {
/// writer.write_str(s.trim()).unwrap();
/// Some(())
/// }
/// }
/// ```
///
/// ## Preprocessing Constant Arguments
///
/// When some input arguments of the function are constants, they can be preprocessed to avoid
/// calculations every time the function is called.
///
/// A classic use case is regular expression matching:
///
/// ```ignore
/// #[function(
/// "regexp_match(varchar, varchar, varchar) -> varchar[]",
/// prebuild = "RegexpContext::from_pattern_flags($1, $2)?"
/// )]
/// fn regexp_match(text: &str, regex: &RegexpContext) -> ListValue {
/// regex.captures(text).collect()
/// }
/// ```
///
/// The `prebuild` argument can be specified, and its value is a Rust expression `Type::method(...)`
/// used to construct a new variable of `Type` from the input arguments of the function.
/// Here `$1`, `$2` represent the second and third arguments of the function (indexed from 0),
/// and their types are `&str`. In the Rust function signature, these positions of parameters will
/// be omitted, replaced by an extra new variable at the end.
///
/// This macro generates two versions of the function. If all the input parameters that `prebuild`
/// depends on are constants, it will precompute them during the build function. Otherwise, it will
/// compute them for each input row during evaluation. This way, we support both constant and variable
/// inputs while optimizing performance for constant inputs.
///
/// ## Context
///
/// If a function needs to obtain type information at runtime, you can add an `&Context` parameter to
/// the function signature. For example:
///
/// ```ignore
/// #[function("foo(int32) -> int64")]
/// fn foo(a: i32, ctx: &Context) -> i64 {
/// assert_eq!(ctx.arg_types[0], DataType::Int32);
/// assert_eq!(ctx.return_type, DataType::Int64);
/// // ...
/// }
/// ```
///
/// ## Async Function
///
/// Functions can be asynchronous.
///
/// ```ignore
/// #[function("pg_sleep(float64)")]
/// async fn pg_sleep(second: F64) {
/// tokio::time::sleep(Duration::from_secs_f64(second.0)).await;
/// }
/// ```
///
/// Asynchronous functions will be evaluated on rows sequentially.
///
/// # Table Function
///
/// A table function is a special kind of function that can return multiple values instead of just
/// one. Its function signature must include the `setof` keyword, and the Rust function should
/// return an iterator of the form `impl Iterator<Item = T>` or its derived types.
///
/// For example:
/// ```ignore
/// #[function("generate_series(int32, int32) -> setof int32")]
/// fn generate_series(start: i32, stop: i32) -> impl Iterator<Item = i32> {
/// start..=stop
/// }
/// ```
///
/// Likewise, the return value `Iterator` can include `Option` or `Result` either internally or
/// externally. For instance:
///
/// - `impl Iterator<Item = Result<T>>`
/// - `Result<impl Iterator<Item = T>>`
/// - `Result<impl Iterator<Item = Result<Option<T>>>>`
///
/// Currently, table function arguments do not support the `Option` type. That is, the function will
/// only be invoked when all arguments are not null.
///
/// # Registration and Invocation
///
/// Every function defined by `#[function]` is automatically registered in the global function
/// table.
///
/// You can build expressions through the following functions:
///
/// ```ignore
/// // scalar functions
/// risingwave_expr::expr::build(...) -> BoxedExpression
/// risingwave_expr::expr::build_from_prost(...) -> BoxedExpression
/// // table functions
/// risingwave_expr::table_function::build(...) -> BoxedTableFunction
/// risingwave_expr::table_function::build_from_prost(...) -> BoxedTableFunction
/// ```
///
/// Or get their metadata through the following functions:
///
/// ```ignore
/// // scalar functions
/// risingwave_expr::sig::func::FUNC_SIG_MAP::get(...)
/// // table functions
/// risingwave_expr::sig::table_function::FUNC_SIG_MAP::get(...)
/// ```
///
/// # Appendix: Type Matrix
///
/// ## Base Types
///
/// | name | SQL type | owned type | reference type | primitive? |
/// | ----------- | ------------------ | ------------- | ------------------ | ---------- |
/// | boolean | `boolean` | `bool` | `bool` | yes |
/// | int2 | `smallint` | `i16` | `i16` | yes |
/// | int4 | `integer` | `i32` | `i32` | yes |
/// | int8 | `bigint` | `i64` | `i64` | yes |
/// | int256 | `rw_int256` | `Int256` | `Int256Ref<'_>` | no |
/// | float4 | `real` | `F32` | `F32` | yes |
/// | float8 | `double precision` | `F64` | `F64` | yes |
/// | decimal | `numeric` | `Decimal` | `Decimal` | yes |
/// | serial | `serial` | `Serial` | `Serial` | yes |
/// | date | `date` | `Date` | `Date` | yes |
/// | time | `time` | `Time` | `Time` | yes |
/// | timestamp | `timestamp` | `Timestamp` | `Timestamp` | yes |
/// | timestamptz | `timestamptz` | `Timestamptz` | `Timestamptz` | yes |
/// | interval | `interval` | `Interval` | `Interval` | yes |
/// | varchar | `varchar` | `Box<str>` | `&str` | no |
/// | bytea | `bytea` | `Box<[u8]>` | `&[u8]` | no |
/// | jsonb | `jsonb` | `JsonbVal` | `JsonbRef<'_>` | no |
/// | any | `any` | `ScalarImpl` | `ScalarRefImpl<'_>`| no |
///
/// ## Composite Types
///
/// | name | SQL type | owned type | reference type |
/// | ---------------------- | -------------------- | ------------- | ------------------ |
/// | anyarray | `any[]` | `ListValue` | `ListRef<'_>` |
/// | struct | `record` | `StructValue` | `StructRef<'_>` |
/// | T[^1][] | `T[]` | `ListValue` | `ListRef<'_>` |
/// | struct<`name_T`[^1], ..> | `struct<name T, ..>` | `(T, ..)` | `(&T, ..)` |
///
/// [^1]: `T` could be any base type
///
/// [type matrix]: #appendix-type-matrix
#[proc_macro_attribute]
pub fn function(attr: TokenStream, item: TokenStream) -> TokenStream {
fn inner(attr: TokenStream, item: TokenStream) -> Result<TokenStream2> {
let fn_attr: FunctionAttr = syn::parse(attr)?;
let user_fn: UserFunctionAttr = syn::parse(item.clone())?;
let mut tokens: TokenStream2 = item.into();
for attr in fn_attr.expand() {
tokens.extend(attr.generate_function_descriptor(&user_fn, false)?);
}
Ok(tokens)
}
match inner(attr, item) {
Ok(tokens) => tokens.into(),
Err(e) => e.to_compile_error().into(),
}
}
/// Different from `#[function]`, which implements the `Expression` trait for a rust scalar function,
/// `#[build_function]` is used when you already implemented `Expression` manually.
///
/// The expected input is a "build" function:
/// ```ignore
/// fn(data_type: DataType, children: Vec<BoxedExpression>) -> Result<BoxedExpression>
/// ```
///
/// It generates the function descriptor using the "build" function and
/// registers the description to the `FUNC_SIG_MAP`.
#[proc_macro_attribute]
pub fn build_function(attr: TokenStream, item: TokenStream) -> TokenStream {
fn inner(attr: TokenStream, item: TokenStream) -> Result<TokenStream2> {
let fn_attr: FunctionAttr = syn::parse(attr)?;
let user_fn: UserFunctionAttr = syn::parse(item.clone())?;
let mut tokens: TokenStream2 = item.into();
for attr in fn_attr.expand() {
tokens.extend(attr.generate_function_descriptor(&user_fn, true)?);
}
Ok(tokens)
}
match inner(attr, item) {
Ok(tokens) => tokens.into(),
Err(e) => e.to_compile_error().into(),
}
}
#[proc_macro_attribute]
pub fn aggregate(attr: TokenStream, item: TokenStream) -> TokenStream {
fn inner(attr: TokenStream, item: TokenStream) -> Result<TokenStream2> {
let fn_attr: FunctionAttr = syn::parse(attr)?;
let user_fn: AggregateFnOrImpl = syn::parse(item.clone())?;
let mut tokens: TokenStream2 = item.into();
for attr in fn_attr.expand() {
tokens.extend(attr.generate_aggregate_descriptor(&user_fn, false)?);
}
Ok(tokens)
}
match inner(attr, item) {
Ok(tokens) => tokens.into(),
Err(e) => e.to_compile_error().into(),
}
}
#[proc_macro_attribute]
pub fn build_aggregate(attr: TokenStream, item: TokenStream) -> TokenStream {
fn inner(attr: TokenStream, item: TokenStream) -> Result<TokenStream2> {
let fn_attr: FunctionAttr = syn::parse(attr)?;
let user_fn: AggregateFnOrImpl = syn::parse(item.clone())?;
let mut tokens: TokenStream2 = item.into();
for attr in fn_attr.expand() {
tokens.extend(attr.generate_aggregate_descriptor(&user_fn, true)?);
}
Ok(tokens)
}
match inner(attr, item) {
Ok(tokens) => tokens.into(),
Err(e) => e.to_compile_error().into(),
}
}
#[derive(Debug, Clone, Default)]
struct FunctionAttr {
/// Function name
name: String,
/// Input argument types
args: Vec<String>,
/// Return type
ret: String,
/// Whether it is a table function
is_table_function: bool,
/// Whether it is an append-only aggregate function
append_only: bool,
/// Optional function for batch evaluation.
batch_fn: Option<String>,
/// State type for aggregate function.
/// If not specified, it will be the same as return type.
state: Option<String>,
/// Initial state value for aggregate function.
/// If not specified, it will be NULL.
init_state: Option<String>,
/// Prebuild function for arguments.
/// This could be any Rust expression.
prebuild: Option<String>,
/// Type inference function.
type_infer: Option<String>,
/// Generic type.
generic: Option<String>,
/// Whether the function is volatile.
volatile: bool,
/// If true, the function is unavailable on the frontend.
deprecated: bool,
/// If true, the function is not implemented on the backend, but its signature is defined.
rewritten: bool,
}
/// Attributes from function signature `fn(..)`
#[derive(Debug, Clone)]
struct UserFunctionAttr {
/// Function name
name: String,
/// Whether the function is async.
async_: bool,
/// Whether contains argument `&Context`.
context: bool,
/// Whether contains argument `&mut impl Write`.
write: bool,
/// Whether the last argument type is `retract: bool`.
retract: bool,
/// Whether each argument type is `Option<T>`.
args_option: Vec<bool>,
/// If the first argument type is `&mut T`, then `Some(T)`.
first_mut_ref_arg: Option<String>,
/// The return type kind.
return_type_kind: ReturnTypeKind,
/// The kind of inner type `T` in `impl Iterator<Item = T>`
iterator_item_kind: Option<ReturnTypeKind>,
/// The core return type without `Option` or `Result`.
core_return_type: String,
/// The number of generic types.
generic: usize,
/// The span of return type.
return_type_span: proc_macro2::Span,
}
#[derive(Debug, Clone)]
struct AggregateImpl {
struct_name: String,
accumulate: UserFunctionAttr,
retract: Option<UserFunctionAttr>,
#[allow(dead_code)] // TODO(wrj): add merge to trait
merge: Option<UserFunctionAttr>,
finalize: Option<UserFunctionAttr>,
create_state: Option<UserFunctionAttr>,
#[allow(dead_code)] // TODO(wrj): support encode
encode_state: Option<UserFunctionAttr>,
#[allow(dead_code)] // TODO(wrj): support decode
decode_state: Option<UserFunctionAttr>,
}
#[derive(Debug, Clone)]
#[allow(clippy::large_enum_variant)]
enum AggregateFnOrImpl {
/// A simple accumulate/retract function.
Fn(UserFunctionAttr),
/// A full impl block.
Impl(AggregateImpl),
}
impl AggregateFnOrImpl {
fn as_fn(&self) -> &UserFunctionAttr {
match self {
AggregateFnOrImpl::Fn(attr) => attr,
_ => panic!("expect fn"),
}
}
fn accumulate(&self) -> &UserFunctionAttr {
match self {
AggregateFnOrImpl::Fn(attr) => attr,
AggregateFnOrImpl::Impl(impl_) => &impl_.accumulate,
}
}
fn has_retract(&self) -> bool {
match self {
AggregateFnOrImpl::Fn(fn_) => fn_.retract,
AggregateFnOrImpl::Impl(impl_) => impl_.retract.is_some(),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
enum ReturnTypeKind {
T,
Option,
Result,
ResultOption,
}
impl FunctionAttr {
/// Return a unique name that can be used as an identifier.
fn ident_name(&self) -> String {
format!("{}_{}_{}", self.name, self.args.join("_"), self.ret)
.replace("[]", "array")
.replace("...", "variadic")
.replace(['<', '>', ' ', ','], "_")
.replace("__", "_")
}
}
impl UserFunctionAttr {
/// Returns true if the function is like `fn(T1, T2, .., Tn) -> T`.
fn is_pure(&self) -> bool {
!self.async_
&& !self.write
&& !self.context
&& self.args_option.iter().all(|b| !b)
&& self.return_type_kind == ReturnTypeKind::T
}
}
/// Define the context variables which can be used by risingwave expressions.
#[proc_macro]
pub fn define_context(def: TokenStream) -> TokenStream {
fn inner(def: TokenStream) -> Result<TokenStream2> {
let attr: DefineContextAttr = syn::parse(def)?;
attr.gen()
}
match inner(def) {
Ok(tokens) => tokens.into(),
Err(e) => e.to_compile_error().into(),
}
}
/// Capture the context from the local context to the function impl.
/// TODO: The macro will be merged to [`#[function(.., capture_context(..))]`](macro@function) later.
///
/// Currently, we should use the macro separately with a simple wrapper.
#[proc_macro_attribute]
pub fn capture_context(attr: TokenStream, item: TokenStream) -> TokenStream {
fn inner(attr: TokenStream, item: TokenStream) -> Result<TokenStream2> {
let attr: CaptureContextAttr = syn::parse(attr)?;
let user_fn: ItemFn = syn::parse(item)?;
// Generate captured function
generate_captured_function(attr, user_fn)
}
match inner(attr, item) {
Ok(tokens) => tokens.into(),
Err(e) => e.to_compile_error().into(),
}
}