risingwave_expr_macro/lib.rs
1// Copyright 2025 RisingWave Labs
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#![feature(let_chains)]
16
17use std::vec;
18
19use context::{CaptureContextAttr, DefineContextAttr, generate_captured_function};
20use proc_macro::TokenStream;
21use proc_macro2::TokenStream as TokenStream2;
22use syn::{Error, ItemFn, Result};
23
24mod context;
25mod r#gen;
26mod parse;
27mod types;
28mod utils;
29
30/// Defining the RisingWave SQL function from a Rust function.
31///
32/// [Online version of this doc.](https://risingwavelabs.github.io/risingwave/rustdoc/risingwave_expr_macro/attr.function.html)
33///
34/// # Table of Contents
35///
36/// - [SQL Function Signature](#sql-function-signature)
37/// - [Multiple Function Definitions](#multiple-function-definitions)
38/// - [Type Expansion](#type-expansion)
39/// - [Automatic Type Inference](#automatic-type-inference)
40/// - [Custom Type Inference Function](#custom-type-inference-function)
41/// - [Rust Function Signature](#rust-function-signature)
42/// - [Nullable Arguments](#nullable-arguments)
43/// - [Return Value](#return-value)
44/// - [Variadic Function](#variadic-function)
45/// - [Optimization](#optimization)
46/// - [Functions Returning Strings](#functions-returning-strings)
47/// - [Preprocessing Constant Arguments](#preprocessing-constant-arguments)
48/// - [Context](#context)
49/// - [Async Function](#async-function)
50/// - [Table Function](#table-function)
51/// - [Registration and Invocation](#registration-and-invocation)
52/// - [Appendix: Type Matrix](#appendix-type-matrix)
53///
54/// The following example demonstrates a simple usage:
55///
56/// ```ignore
57/// #[function("add(int32, int32) -> int32")]
58/// fn add(x: i32, y: i32) -> i32 {
59/// x + y
60/// }
61/// ```
62///
63/// # SQL Function Signature
64///
65/// Each function must have a signature, specified in the `function("...")` part of the macro
66/// invocation. The signature follows this pattern:
67///
68/// ```text
69/// name ( [arg_types],* [...] ) [ -> [setof] return_type ]
70/// ```
71///
72/// Where `name` is the function name in `snake_case`, which must match the function name (in `UPPER_CASE`) defined
73/// in `proto/expr.proto`.
74///
75/// `arg_types` is a comma-separated list of argument types. The allowed data types are listed in
76/// in the `name` column of the appendix's [type matrix]. Wildcards or `auto` can also be used, as
77/// explained below. If the function is variadic, the last argument can be denoted as `...`.
78///
79/// When `setof` appears before the return type, this indicates that the function is a set-returning
80/// function (table function), meaning it can return multiple values instead of just one. For more
81/// details, see the section on table functions.
82///
83/// If no return type is specified, the function returns `void`. However, the void type is not
84/// supported in our type system, so it now returns a null value of type int.
85///
86/// ## Multiple Function Definitions
87///
88/// Multiple `#[function]` macros can be applied to a single generic Rust function to define
89/// multiple SQL functions of different types. For example:
90///
91/// ```ignore
92/// #[function("add(int16, int16) -> int16")]
93/// #[function("add(int32, int32) -> int32")]
94/// #[function("add(int64, int64) -> int64")]
95/// fn add<T: Add>(x: T, y: T) -> T {
96/// x + y
97/// }
98/// ```
99///
100/// ## Type Expansion with `*`
101///
102/// Types can be automatically expanded to multiple types using wildcards. Here are some examples:
103///
104/// - `*`: expands to all types.
105/// - `*int`: expands to int16, int32, int64.
106/// - `*float`: expands to float32, float64.
107///
108/// For instance, `#[function("cast(varchar) -> *int")]` will be expanded to the following three
109/// functions:
110///
111/// ```ignore
112/// #[function("cast(varchar) -> int16")]
113/// #[function("cast(varchar) -> int32")]
114/// #[function("cast(varchar) -> int64")]
115/// ```
116///
117/// Please note the difference between `*` and `any`: `*` will generate a function for each type,
118/// whereas `any` will only generate one function with a dynamic data type `Scalar`.
119/// This is similar to `impl T` and `dyn T` in Rust. The performance of using `*` would be much better than `any`.
120/// But we do not always prefer `*` due to better performance. In some cases, using `any` is more convenient.
121/// For example, in array functions, the element type of `ListValue` is `Scalar(Ref)Impl`.
122/// It is unnecessary to convert it from/into various `T`.
123///
124/// ## Automatic Type Inference with `auto`
125///
126/// Correspondingly, the return type can be denoted as `auto` to be automatically inferred based on
127/// the input types. It will be inferred as the _smallest type_ that can accommodate all input types.
128///
129/// For example, `#[function("add(*int, *int) -> auto")]` will be expanded to:
130///
131/// ```ignore
132/// #[function("add(int16, int16) -> int16")]
133/// #[function("add(int16, int32) -> int32")]
134/// #[function("add(int16, int64) -> int64")]
135/// #[function("add(int32, int16) -> int32")]
136/// ...
137/// ```
138///
139/// Especially when there is only one input argument, `auto` will be inferred as the type of that
140/// argument. For example, `#[function("neg(*int) -> auto")]` will be expanded to:
141///
142/// ```ignore
143/// #[function("neg(int16) -> int16")]
144/// #[function("neg(int32) -> int32")]
145/// #[function("neg(int64) -> int64")]
146/// ```
147///
148/// ## Custom Type Inference Function with `type_infer`
149///
150/// A few functions might have a return type that dynamically changes based on the input argument
151/// types, such as `unnest`. This is mainly for composite types like `anyarray`, `struct`, and `anymap`.
152///
153/// In such cases, the `type_infer` option can be used to specify a function to infer the return
154/// type based on the input argument types. Its function signature is
155///
156/// ```ignore
157/// fn(&[DataType]) -> Result<DataType>
158/// ```
159///
160/// For example:
161///
162/// ```ignore
163/// #[function(
164/// "unnest(anyarray) -> setof any",
165/// type_infer = "|args| Ok(args[0].unnest_list())"
166/// )]
167/// ```
168///
169/// This type inference function will be invoked at the frontend (`infer_type_with_sigmap`).
170///
171/// # Rust Function Signature
172///
173/// The `#[function]` macro can handle various types of Rust functions.
174///
175/// Each argument corresponds to the *reference type* in the [type matrix].
176///
177/// The return value type can be the *reference type* or *owned type* in the [type matrix].
178///
179/// For instance:
180///
181/// ```ignore
182/// #[function("trim_array(anyarray, int32) -> anyarray")]
183/// fn trim_array(array: ListRef<'_>, n: i32) -> ListValue {...}
184/// ```
185///
186/// ## Nullable Arguments
187///
188/// The functions above will only be called when all arguments are not null.
189/// It will return null if any argument is null.
190/// If null arguments need to be considered, the `Option` type can be used:
191///
192/// ```ignore
193/// #[function("trim_array(anyarray, int32) -> anyarray")]
194/// fn trim_array(array: ListRef<'_>, n: Option<i32>) -> ListValue {...}
195/// ```
196///
197/// This function will be called when `n` is null, but not when `array` is null.
198///
199/// ## Return `NULL`s and Errors
200///
201/// Similarly, the return value type can be one of the following:
202///
203/// - `T`: Indicates that a non-null value is always returned (for non-null inputs), and errors will not occur.
204/// - `Option<T>`: Indicates that a null value may be returned, but errors will not occur.
205/// - `Result<T>`: Indicates that an error may occur, but a null value will not be returned.
206/// - `Result<Option<T>>`: Indicates that a null value may be returned, and an error may also occur.
207///
208/// ## Optimization
209///
210/// When all input and output types of the function are *primitive type* (refer to the [type
211/// matrix]) and do not contain any Option or Result, the `#[function]` macro will automatically
212/// generate SIMD vectorized execution code.
213///
214/// Therefore, try to avoid returning `Option` and `Result` whenever possible.
215///
216/// ## Variadic Function
217///
218/// Variadic functions accept a `impl Row` input to represent tailing arguments.
219/// For example:
220///
221/// ```ignore
222/// #[function("concat_ws(varchar, ...) -> varchar")]
223/// fn concat_ws(sep: &str, vals: impl Row) -> Option<Box<str>> {
224/// let mut string_iter = vals.iter().flatten();
225/// // ...
226/// }
227/// ```
228///
229/// See `risingwave_common::row::Row` for more details.
230///
231/// ## Functions Returning Strings
232///
233/// For functions that return varchar types, you can also use the writer style function signature to
234/// avoid memory copying and dynamic memory allocation:
235///
236/// ```ignore
237/// #[function("trim(varchar) -> varchar")]
238/// fn trim(s: &str, writer: &mut impl Write) {
239/// writer.write_str(s.trim()).unwrap();
240/// }
241/// ```
242///
243/// If errors may be returned, then the return value should be `Result<()>`:
244///
245/// ```ignore
246/// #[function("trim(varchar) -> varchar")]
247/// fn trim(s: &str, writer: &mut impl Write) -> Result<()> {
248/// writer.write_str(s.trim()).unwrap();
249/// Ok(())
250/// }
251/// ```
252///
253/// If null values may be returned, then the return value should be `Option<()>`:
254///
255/// ```ignore
256/// #[function("trim(varchar) -> varchar")]
257/// fn trim(s: &str, writer: &mut impl Write) -> Option<()> {
258/// if s.is_empty() {
259/// None
260/// } else {
261/// writer.write_str(s.trim()).unwrap();
262/// Some(())
263/// }
264/// }
265/// ```
266///
267/// ## Preprocessing Constant Arguments
268///
269/// When some input arguments of the function are constants, they can be preprocessed to avoid
270/// calculations every time the function is called.
271///
272/// A classic use case is regular expression matching:
273///
274/// ```ignore
275/// #[function(
276/// "regexp_match(varchar, varchar, varchar) -> varchar[]",
277/// prebuild = "RegexpContext::from_pattern_flags($1, $2)?"
278/// )]
279/// fn regexp_match(text: &str, regex: &RegexpContext) -> ListValue {
280/// regex.captures(text).collect()
281/// }
282/// ```
283///
284/// The `prebuild` argument can be specified, and its value is a Rust expression `Type::method(...)`
285/// used to construct a new variable of `Type` from the input arguments of the function.
286/// Here `$1`, `$2` represent the second and third arguments of the function (indexed from 0),
287/// and their types are `&str`. In the Rust function signature, these positions of parameters will
288/// be omitted, replaced by an extra new variable at the end.
289///
290/// This macro generates two versions of the function. If all the input parameters that `prebuild`
291/// depends on are constants, it will precompute them during the build function. Otherwise, it will
292/// compute them for each input row during evaluation. This way, we support both constant and variable
293/// inputs while optimizing performance for constant inputs.
294///
295/// ## Context
296///
297/// If a function needs to obtain type information at runtime, you can add an `&Context` parameter to
298/// the function signature. For example:
299///
300/// ```ignore
301/// #[function("foo(int32) -> int64")]
302/// fn foo(a: i32, ctx: &Context) -> i64 {
303/// assert_eq!(ctx.arg_types[0], DataType::Int32);
304/// assert_eq!(ctx.return_type, DataType::Int64);
305/// // ...
306/// }
307/// ```
308///
309/// ## Async Function
310///
311/// Functions can be asynchronous.
312///
313/// ```ignore
314/// #[function("pg_sleep(float64)")]
315/// async fn pg_sleep(second: F64) {
316/// tokio::time::sleep(Duration::from_secs_f64(second.0)).await;
317/// }
318/// ```
319///
320/// Asynchronous functions will be evaluated on rows sequentially.
321///
322/// # Table Function
323///
324/// A table function is a special kind of function that can return multiple values instead of just
325/// one. Its function signature must include the `setof` keyword, and the Rust function should
326/// return an iterator of the form `impl Iterator<Item = T>` or its derived types.
327///
328/// For example:
329/// ```ignore
330/// #[function("generate_series(int32, int32) -> setof int32")]
331/// fn generate_series(start: i32, stop: i32) -> impl Iterator<Item = i32> {
332/// start..=stop
333/// }
334/// ```
335///
336/// Likewise, the return value `Iterator` can include `Option` or `Result` either internally or
337/// externally. For instance:
338///
339/// - `impl Iterator<Item = Result<T>>`
340/// - `Result<impl Iterator<Item = T>>`
341/// - `Result<impl Iterator<Item = Result<Option<T>>>>`
342///
343/// Currently, table function arguments do not support the `Option` type. That is, the function will
344/// only be invoked when all arguments are not null.
345///
346/// # Registration and Invocation
347///
348/// Every function defined by `#[function]` is automatically registered in the global function
349/// table.
350///
351/// You can build expressions through the following functions:
352///
353/// ```ignore
354/// // scalar functions
355/// risingwave_expr::expr::build(...) -> BoxedExpression
356/// risingwave_expr::expr::build_from_prost(...) -> BoxedExpression
357/// // table functions
358/// risingwave_expr::table_function::build(...) -> BoxedTableFunction
359/// risingwave_expr::table_function::build_from_prost(...) -> BoxedTableFunction
360/// ```
361///
362/// Or get their metadata through the following functions:
363///
364/// ```ignore
365/// // scalar functions
366/// risingwave_expr::sig::func::FUNC_SIG_MAP::get(...)
367/// // table functions
368/// risingwave_expr::sig::table_function::FUNC_SIG_MAP::get(...)
369/// ```
370///
371/// # Appendix: Type Matrix
372///
373/// ## Base Types
374///
375/// | name | SQL type | owned type | reference type | primitive? |
376/// | ----------- | ------------------ | ------------- | ------------------ | ---------- |
377/// | boolean | `boolean` | `bool` | `bool` | yes |
378/// | int2 | `smallint` | `i16` | `i16` | yes |
379/// | int4 | `integer` | `i32` | `i32` | yes |
380/// | int8 | `bigint` | `i64` | `i64` | yes |
381/// | int256 | `rw_int256` | `Int256` | `Int256Ref<'_>` | no |
382/// | float4 | `real` | `F32` | `F32` | yes |
383/// | float8 | `double precision` | `F64` | `F64` | yes |
384/// | decimal | `numeric` | `Decimal` | `Decimal` | yes |
385/// | serial | `serial` | `Serial` | `Serial` | yes |
386/// | date | `date` | `Date` | `Date` | yes |
387/// | time | `time` | `Time` | `Time` | yes |
388/// | timestamp | `timestamp` | `Timestamp` | `Timestamp` | yes |
389/// | timestamptz | `timestamptz` | `Timestamptz` | `Timestamptz` | yes |
390/// | interval | `interval` | `Interval` | `Interval` | yes |
391/// | varchar | `varchar` | `Box<str>` | `&str` | no |
392/// | bytea | `bytea` | `Box<[u8]>` | `&[u8]` | no |
393/// | jsonb | `jsonb` | `JsonbVal` | `JsonbRef<'_>` | no |
394/// | any | `any` | `ScalarImpl` | `ScalarRefImpl<'_>`| no |
395///
396/// ## Composite Types
397///
398/// | name | SQL type | owned type | reference type |
399/// | ---------------------- | -------------------- | ------------- | ------------------ |
400/// | anyarray | `any[]` | `ListValue` | `ListRef<'_>` |
401/// | struct | `record` | `StructValue` | `StructRef<'_>` |
402/// | T[^1][] | `T[]` | `ListValue` | `ListRef<'_>` |
403/// | struct<`name_T`[^1], ..> | `struct<name T, ..>` | `(T, ..)` | `(&T, ..)` |
404///
405/// [^1]: `T` could be any base type
406///
407/// [type matrix]: #appendix-type-matrix
408#[proc_macro_attribute]
409pub fn function(attr: TokenStream, item: TokenStream) -> TokenStream {
410 fn inner(attr: TokenStream, item: TokenStream) -> Result<TokenStream2> {
411 let fn_attr: FunctionAttr = syn::parse(attr)?;
412 let user_fn: UserFunctionAttr = syn::parse(item.clone())?;
413
414 let mut tokens: TokenStream2 = item.into();
415 for attr in fn_attr.expand() {
416 tokens.extend(attr.generate_function_descriptor(&user_fn, false)?);
417 }
418 Ok(tokens)
419 }
420 match inner(attr, item) {
421 Ok(tokens) => tokens.into(),
422 Err(e) => e.to_compile_error().into(),
423 }
424}
425
426/// Different from `#[function]`, which implements the `Expression` trait for a rust scalar function,
427/// `#[build_function]` is used when you already implemented `Expression` manually.
428///
429/// The expected input is a "build" function:
430/// ```ignore
431/// fn(data_type: DataType, children: Vec<BoxedExpression>) -> Result<BoxedExpression>
432/// ```
433///
434/// It generates the function descriptor using the "build" function and
435/// registers the description to the `FUNC_SIG_MAP`.
436#[proc_macro_attribute]
437pub fn build_function(attr: TokenStream, item: TokenStream) -> TokenStream {
438 fn inner(attr: TokenStream, item: TokenStream) -> Result<TokenStream2> {
439 let fn_attr: FunctionAttr = syn::parse(attr)?;
440 let user_fn: UserFunctionAttr = syn::parse(item.clone())?;
441
442 let mut tokens: TokenStream2 = item.into();
443 for attr in fn_attr.expand() {
444 tokens.extend(attr.generate_function_descriptor(&user_fn, true)?);
445 }
446 Ok(tokens)
447 }
448 match inner(attr, item) {
449 Ok(tokens) => tokens.into(),
450 Err(e) => e.to_compile_error().into(),
451 }
452}
453
454#[proc_macro_attribute]
455pub fn aggregate(attr: TokenStream, item: TokenStream) -> TokenStream {
456 fn inner(attr: TokenStream, item: TokenStream) -> Result<TokenStream2> {
457 let fn_attr: FunctionAttr = syn::parse(attr)?;
458 let user_fn: AggregateFnOrImpl = syn::parse(item.clone())?;
459
460 let mut tokens: TokenStream2 = item.into();
461 for attr in fn_attr.expand() {
462 tokens.extend(attr.generate_aggregate_descriptor(&user_fn, false)?);
463 }
464 Ok(tokens)
465 }
466 match inner(attr, item) {
467 Ok(tokens) => tokens.into(),
468 Err(e) => e.to_compile_error().into(),
469 }
470}
471
472#[proc_macro_attribute]
473pub fn build_aggregate(attr: TokenStream, item: TokenStream) -> TokenStream {
474 fn inner(attr: TokenStream, item: TokenStream) -> Result<TokenStream2> {
475 let fn_attr: FunctionAttr = syn::parse(attr)?;
476 let user_fn: AggregateFnOrImpl = syn::parse(item.clone())?;
477
478 let mut tokens: TokenStream2 = item.into();
479 for attr in fn_attr.expand() {
480 tokens.extend(attr.generate_aggregate_descriptor(&user_fn, true)?);
481 }
482 Ok(tokens)
483 }
484 match inner(attr, item) {
485 Ok(tokens) => tokens.into(),
486 Err(e) => e.to_compile_error().into(),
487 }
488}
489
490#[derive(Debug, Clone, Default)]
491struct FunctionAttr {
492 /// Function name
493 name: String,
494 /// Input argument types
495 args: Vec<String>,
496 /// Return type
497 ret: String,
498 /// Whether it is a table function
499 is_table_function: bool,
500 /// Whether it is an append-only aggregate function
501 append_only: bool,
502 /// Optional function for batch evaluation.
503 batch_fn: Option<String>,
504 /// State type for aggregate function.
505 /// If not specified, it will be the same as return type.
506 state: Option<String>,
507 /// Initial state value for aggregate function.
508 /// If not specified, it will be NULL.
509 init_state: Option<String>,
510 /// Prebuild function for arguments.
511 /// This could be any Rust expression.
512 prebuild: Option<String>,
513 /// Type inference function.
514 type_infer: Option<String>,
515 /// Generic type.
516 generic: Option<String>,
517 /// Whether the function is volatile.
518 volatile: bool,
519 /// If true, the function is unavailable on the frontend.
520 deprecated: bool,
521 /// If true, the function is not implemented on the backend, but its signature is defined.
522 rewritten: bool,
523}
524
525/// Attributes from function signature `fn(..)`
526#[derive(Debug, Clone)]
527struct UserFunctionAttr {
528 /// Function name
529 name: String,
530 /// Whether the function is async.
531 async_: bool,
532 /// Whether contains argument `&Context`.
533 context: bool,
534 /// Whether contains argument `&mut impl Write`.
535 write: bool,
536 /// Whether the last argument type is `retract: bool`.
537 retract: bool,
538 /// Whether each argument type is `Option<T>`.
539 args_option: Vec<bool>,
540 /// If the first argument type is `&mut T`, then `Some(T)`.
541 first_mut_ref_arg: Option<String>,
542 /// The return type kind.
543 return_type_kind: ReturnTypeKind,
544 /// The kind of inner type `T` in `impl Iterator<Item = T>`
545 iterator_item_kind: Option<ReturnTypeKind>,
546 /// The core return type without `Option` or `Result`.
547 core_return_type: String,
548 /// The number of generic types.
549 generic: usize,
550 /// The span of return type.
551 return_type_span: proc_macro2::Span,
552}
553
554#[derive(Debug, Clone)]
555struct AggregateImpl {
556 struct_name: String,
557 accumulate: UserFunctionAttr,
558 retract: Option<UserFunctionAttr>,
559 #[allow(dead_code)] // TODO(wrj): add merge to trait
560 merge: Option<UserFunctionAttr>,
561 finalize: Option<UserFunctionAttr>,
562 create_state: Option<UserFunctionAttr>,
563 #[allow(dead_code)] // TODO(wrj): support encode
564 encode_state: Option<UserFunctionAttr>,
565 #[allow(dead_code)] // TODO(wrj): support decode
566 decode_state: Option<UserFunctionAttr>,
567}
568
569#[derive(Debug, Clone)]
570#[allow(clippy::large_enum_variant)]
571enum AggregateFnOrImpl {
572 /// A simple accumulate/retract function.
573 Fn(UserFunctionAttr),
574 /// A full impl block.
575 Impl(AggregateImpl),
576}
577
578impl AggregateFnOrImpl {
579 fn as_fn(&self) -> &UserFunctionAttr {
580 match self {
581 AggregateFnOrImpl::Fn(attr) => attr,
582 _ => panic!("expect fn"),
583 }
584 }
585
586 fn accumulate(&self) -> &UserFunctionAttr {
587 match self {
588 AggregateFnOrImpl::Fn(attr) => attr,
589 AggregateFnOrImpl::Impl(impl_) => &impl_.accumulate,
590 }
591 }
592
593 fn has_retract(&self) -> bool {
594 match self {
595 AggregateFnOrImpl::Fn(fn_) => fn_.retract,
596 AggregateFnOrImpl::Impl(impl_) => impl_.retract.is_some(),
597 }
598 }
599}
600
601#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
602enum ReturnTypeKind {
603 T,
604 Option,
605 Result,
606 ResultOption,
607}
608
609impl FunctionAttr {
610 /// Return a unique name that can be used as an identifier.
611 fn ident_name(&self) -> String {
612 format!("{}_{}_{}", self.name, self.args.join("_"), self.ret)
613 .replace("[]", "array")
614 .replace("...", "variadic")
615 .replace(['<', '>', ' ', ','], "_")
616 .replace("__", "_")
617 }
618}
619
620impl UserFunctionAttr {
621 /// Returns true if the function is like `fn(T1, T2, .., Tn) -> T`.
622 fn is_pure(&self) -> bool {
623 !self.async_
624 && !self.write
625 && !self.context
626 && self.args_option.iter().all(|b| !b)
627 && self.return_type_kind == ReturnTypeKind::T
628 }
629}
630
631/// Define the context variables which can be used by risingwave expressions.
632#[proc_macro]
633pub fn define_context(def: TokenStream) -> TokenStream {
634 fn inner(def: TokenStream) -> Result<TokenStream2> {
635 let attr: DefineContextAttr = syn::parse(def)?;
636 attr.r#gen()
637 }
638
639 match inner(def) {
640 Ok(tokens) => tokens.into(),
641 Err(e) => e.to_compile_error().into(),
642 }
643}
644
645/// Capture the context from the local context to the function impl.
646/// TODO: The macro will be merged to [`#[function(.., capture_context(..))]`](macro@function) later.
647///
648/// Currently, we should use the macro separately with a simple wrapper.
649#[proc_macro_attribute]
650pub fn capture_context(attr: TokenStream, item: TokenStream) -> TokenStream {
651 fn inner(attr: TokenStream, item: TokenStream) -> Result<TokenStream2> {
652 let attr: CaptureContextAttr = syn::parse(attr)?;
653 let user_fn: ItemFn = syn::parse(item)?;
654
655 // Generate captured function
656 generate_captured_function(attr, user_fn)
657 }
658 match inner(attr, item) {
659 Ok(tokens) => tokens.into(),
660 Err(e) => e.to_compile_error().into(),
661 }
662}