1use itertools::Itertools;
16use risingwave_common::catalog::Schema;
17use risingwave_common::types::{DataType, ScalarImpl};
18use risingwave_common::util::iter_util::ZipEqFast;
19
20use super::type_inference::cast;
21use super::{CastContext, CastError, Expr, ExprImpl, Literal, infer_some_all, infer_type};
22use crate::error::Result as RwResult;
23use crate::expr::{ExprDisplay, ExprType, ExprVisitor, ImpureAnalyzer, bail_cast_error};
24
25#[derive(Clone, Eq, PartialEq, Hash)]
26pub struct FunctionCall {
27 pub(super) func_type: ExprType,
28 pub(super) return_type: DataType,
29 pub(super) inputs: Vec<ExprImpl>,
30}
31
32fn debug_binary_op(
33 f: &mut std::fmt::Formatter<'_>,
34 op: &str,
35 inputs: &[ExprImpl],
36) -> std::fmt::Result {
37 use std::fmt::Debug;
38
39 assert_eq!(inputs.len(), 2);
40
41 write!(f, "(")?;
42 inputs[0].fmt(f)?;
43 write!(f, " {} ", op)?;
44 inputs[1].fmt(f)?;
45 write!(f, ")")?;
46
47 Ok(())
48}
49
50impl std::fmt::Debug for FunctionCall {
51 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
52 if f.alternate() {
53 f.debug_struct("FunctionCall")
54 .field("func_type", &self.func_type)
55 .field("return_type", &self.return_type)
56 .field("inputs", &self.inputs)
57 .finish()
58 } else {
59 match &self.func_type {
60 ExprType::Cast => {
61 assert_eq!(self.inputs.len(), 1);
62 self.inputs[0].fmt(f)?;
63 write!(f, "::{:?}", self.return_type)
64 }
65 ExprType::Add => debug_binary_op(f, "+", &self.inputs),
66 ExprType::Subtract => debug_binary_op(f, "-", &self.inputs),
67 ExprType::Multiply => debug_binary_op(f, "*", &self.inputs),
68 ExprType::Divide => debug_binary_op(f, "/", &self.inputs),
69 ExprType::Modulus => debug_binary_op(f, "%", &self.inputs),
70 ExprType::Equal => debug_binary_op(f, "=", &self.inputs),
71 ExprType::NotEqual => debug_binary_op(f, "<>", &self.inputs),
72 ExprType::LessThan => debug_binary_op(f, "<", &self.inputs),
73 ExprType::LessThanOrEqual => debug_binary_op(f, "<=", &self.inputs),
74 ExprType::GreaterThan => debug_binary_op(f, ">", &self.inputs),
75 ExprType::GreaterThanOrEqual => debug_binary_op(f, ">=", &self.inputs),
76 ExprType::And => debug_binary_op(f, "AND", &self.inputs),
77 ExprType::Or => debug_binary_op(f, "OR", &self.inputs),
78 ExprType::BitwiseShiftLeft => debug_binary_op(f, "<<", &self.inputs),
79 ExprType::BitwiseShiftRight => debug_binary_op(f, ">>", &self.inputs),
80 ExprType::BitwiseAnd => debug_binary_op(f, "&", &self.inputs),
81 ExprType::BitwiseOr => debug_binary_op(f, "|", &self.inputs),
82 ExprType::BitwiseXor => debug_binary_op(f, "#", &self.inputs),
83 ExprType::ArrayContains => debug_binary_op(f, "@>", &self.inputs),
84 ExprType::ArrayContained => debug_binary_op(f, "<@", &self.inputs),
85 _ => {
86 let func_name = format!("{:?}", self.func_type);
87 let mut builder = f.debug_tuple(&func_name);
88 self.inputs.iter().for_each(|child| {
89 builder.field(child);
90 });
91 builder.finish()
92 }
93 }
94 }
95 }
96}
97
98impl FunctionCall {
99 pub fn new(func_type: ExprType, mut inputs: Vec<ExprImpl>) -> RwResult<Self> {
105 let return_type = infer_type(func_type.into(), &mut inputs)?;
106 Ok(Self::new_unchecked(func_type, inputs, return_type))
107 }
108
109 pub fn cast_mut(
112 child: &mut ExprImpl,
113 target: DataType,
114 allows: CastContext,
115 ) -> Result<(), CastError> {
116 if let ExprImpl::Parameter(expr) = child
117 && !expr.has_infer()
118 {
119 expr.cast_infer_type(target);
121 return Ok(());
122 }
123 if let ExprImpl::FunctionCall(func) = child
124 && func.func_type == ExprType::Row
125 {
126 return Self::cast_row_expr(func, target, allows);
130 }
131 if child.is_untyped() {
132 let literal = child.as_literal().unwrap();
134 let datum = literal
135 .get_data()
136 .as_ref()
137 .map(|scalar| ScalarImpl::from_text(scalar.as_utf8(), &target))
138 .transpose();
139 if let Ok(datum) = datum {
140 *child = Literal::new(datum, target).into();
141 return Ok(());
142 }
143 }
146
147 let source = child.return_type();
148 if source == target {
149 return Ok(());
150 }
151
152 if child.is_untyped() {
153 } else {
156 cast(&source, &target, allows)?;
157 }
158
159 let owned = std::mem::replace(child, ExprImpl::literal_bool(false));
161 *child = Self::new_unchecked(ExprType::Cast, vec![owned], target).into();
162 Ok(())
163 }
164
165 fn cast_row_expr(
169 func: &mut FunctionCall,
170 target_type: DataType,
171 allows: CastContext,
172 ) -> Result<(), CastError> {
173 let DataType::Struct(t) = &target_type else {
175 bail_cast_error!(
176 "cannot cast type \"{}\" to \"{}\"",
177 func.return_type(), target_type,
179 );
180 };
181
182 let expected_len = t.len();
183 let actual_len = func.inputs.len();
184
185 match expected_len.cmp(&actual_len) {
186 std::cmp::Ordering::Equal => {
187 func.inputs
190 .iter_mut()
191 .zip_eq_fast(t.types())
192 .try_for_each(|(e, t)| Self::cast_mut(e, t.clone(), allows))?;
193 func.return_type = target_type;
194 Ok(())
195 }
196 std::cmp::Ordering::Less => bail_cast_error!(
197 "input has too many columns, expected {expected_len} but got {actual_len}"
198 ),
199 std::cmp::Ordering::Greater => bail_cast_error!(
200 "input has too few columns, expected {expected_len} but got {actual_len}"
201 ),
202 }
203 }
204
205 pub fn new_unchecked(
208 func_type: ExprType,
209 inputs: Vec<ExprImpl>,
210 return_type: DataType,
211 ) -> Self {
212 FunctionCall {
213 func_type,
214 return_type,
215 inputs,
216 }
217 }
218
219 pub fn new_binary_op_func(
220 mut func_types: Vec<ExprType>,
221 mut inputs: Vec<ExprImpl>,
222 ) -> RwResult<ExprImpl> {
223 let expr_type = func_types.remove(0);
224 match expr_type {
225 ExprType::Some | ExprType::All => {
226 let return_type = infer_some_all(func_types, &mut inputs)?;
227 Ok(FunctionCall::new_unchecked(expr_type, inputs, return_type).into())
228 }
229 ExprType::Not | ExprType::IsNotNull | ExprType::IsNull => Ok(FunctionCall::new(
230 expr_type,
231 vec![Self::new_binary_op_func(func_types, inputs)?],
232 )?
233 .into()),
234 _ => Ok(FunctionCall::new(expr_type, inputs)?.into()),
235 }
236 }
237
238 pub fn decompose(self) -> (ExprType, Vec<ExprImpl>, DataType) {
239 (self.func_type, self.inputs, self.return_type)
240 }
241
242 pub fn decompose_as_binary(self) -> (ExprType, ExprImpl, ExprImpl) {
243 assert_eq!(self.inputs.len(), 2);
244 let mut iter = self.inputs.into_iter();
245 let left = iter.next().unwrap();
246 let right = iter.next().unwrap();
247 (self.func_type, left, right)
248 }
249
250 pub fn decompose_as_unary(self) -> (ExprType, ExprImpl) {
251 assert_eq!(self.inputs.len(), 1);
252 let mut iter = self.inputs.into_iter();
253 let input = iter.next().unwrap();
254 (self.func_type, input)
255 }
256
257 pub fn func_type(&self) -> ExprType {
258 self.func_type
259 }
260
261 pub fn inputs(&self) -> &[ExprImpl] {
263 self.inputs.as_ref()
264 }
265
266 pub fn inputs_mut(&mut self) -> &mut [ExprImpl] {
267 self.inputs.as_mut()
268 }
269
270 pub(super) fn from_expr_proto(
271 function_call: &risingwave_pb::expr::FunctionCall,
272 func_type: ExprType,
273 return_type: DataType,
274 ) -> RwResult<Self> {
275 let inputs: Vec<_> = function_call
276 .get_children()
277 .iter()
278 .map(ExprImpl::from_expr_proto)
279 .try_collect()?;
280 Ok(Self {
281 func_type,
282 return_type,
283 inputs,
284 })
285 }
286
287 pub fn is_pure(&self) -> bool {
288 let mut a = ImpureAnalyzer { impure: false };
289 a.visit_function_call(self);
290 !a.impure
291 }
292}
293
294impl Expr for FunctionCall {
295 fn return_type(&self) -> DataType {
296 self.return_type.clone()
297 }
298
299 fn to_expr_proto(&self) -> risingwave_pb::expr::ExprNode {
300 use risingwave_pb::expr::expr_node::*;
301 use risingwave_pb::expr::*;
302 ExprNode {
303 function_type: self.func_type().into(),
304 return_type: Some(self.return_type().to_protobuf()),
305 rex_node: Some(RexNode::FuncCall(FunctionCall {
306 children: self.inputs().iter().map(Expr::to_expr_proto).collect(),
307 })),
308 }
309 }
310}
311
312pub struct FunctionCallDisplay<'a> {
313 pub function_call: &'a FunctionCall,
314 pub input_schema: &'a Schema,
315}
316
317impl std::fmt::Debug for FunctionCallDisplay<'_> {
318 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
319 let that = self.function_call;
320 match &that.func_type {
321 ExprType::Cast => {
322 assert_eq!(that.inputs.len(), 1);
323 ExprDisplay {
324 expr: &that.inputs[0],
325 input_schema: self.input_schema,
326 }
327 .fmt(f)?;
328 write!(f, "::{:?}", that.return_type)
329 }
330 ExprType::Add => explain_verbose_binary_op(f, "+", &that.inputs, self.input_schema),
331 ExprType::Subtract => {
332 explain_verbose_binary_op(f, "-", &that.inputs, self.input_schema)
333 }
334 ExprType::Multiply => {
335 explain_verbose_binary_op(f, "*", &that.inputs, self.input_schema)
336 }
337 ExprType::Divide => explain_verbose_binary_op(f, "/", &that.inputs, self.input_schema),
338 ExprType::Modulus => explain_verbose_binary_op(f, "%", &that.inputs, self.input_schema),
339 ExprType::Equal => explain_verbose_binary_op(f, "=", &that.inputs, self.input_schema),
340 ExprType::NotEqual => {
341 explain_verbose_binary_op(f, "<>", &that.inputs, self.input_schema)
342 }
343 ExprType::LessThan => {
344 explain_verbose_binary_op(f, "<", &that.inputs, self.input_schema)
345 }
346 ExprType::LessThanOrEqual => {
347 explain_verbose_binary_op(f, "<=", &that.inputs, self.input_schema)
348 }
349 ExprType::GreaterThan => {
350 explain_verbose_binary_op(f, ">", &that.inputs, self.input_schema)
351 }
352 ExprType::GreaterThanOrEqual => {
353 explain_verbose_binary_op(f, ">=", &that.inputs, self.input_schema)
354 }
355 ExprType::And => explain_verbose_binary_op(f, "AND", &that.inputs, self.input_schema),
356 ExprType::Or => explain_verbose_binary_op(f, "OR", &that.inputs, self.input_schema),
357 ExprType::BitwiseShiftLeft => {
358 explain_verbose_binary_op(f, "<<", &that.inputs, self.input_schema)
359 }
360 ExprType::BitwiseShiftRight => {
361 explain_verbose_binary_op(f, ">>", &that.inputs, self.input_schema)
362 }
363 ExprType::BitwiseAnd => {
364 explain_verbose_binary_op(f, "&", &that.inputs, self.input_schema)
365 }
366 ExprType::BitwiseOr => {
367 explain_verbose_binary_op(f, "|", &that.inputs, self.input_schema)
368 }
369 ExprType::BitwiseXor => {
370 explain_verbose_binary_op(f, "#", &that.inputs, self.input_schema)
371 }
372 ExprType::ArrayContains => {
373 explain_verbose_binary_op(f, "@>", &that.inputs, self.input_schema)
374 }
375 ExprType::ArrayContained => {
376 explain_verbose_binary_op(f, "<@", &that.inputs, self.input_schema)
377 }
378 ExprType::Proctime => {
379 write!(f, "{:?}", that.func_type)
380 }
381 _ => {
382 let func_name = format!("{:?}", that.func_type);
383 let mut builder = f.debug_tuple(&func_name);
384 that.inputs.iter().for_each(|child| {
385 builder.field(&ExprDisplay {
386 expr: child,
387 input_schema: self.input_schema,
388 });
389 });
390 builder.finish()
391 }
392 }
393 }
394}
395
396fn explain_verbose_binary_op(
397 f: &mut std::fmt::Formatter<'_>,
398 op: &str,
399 inputs: &[ExprImpl],
400 input_schema: &Schema,
401) -> std::fmt::Result {
402 use std::fmt::Debug;
403
404 assert_eq!(inputs.len(), 2);
405
406 write!(f, "(")?;
407 ExprDisplay {
408 expr: &inputs[0],
409 input_schema,
410 }
411 .fmt(f)?;
412 write!(f, " {} ", op)?;
413 ExprDisplay {
414 expr: &inputs[1],
415 input_schema,
416 }
417 .fmt(f)?;
418 write!(f, ")")?;
419
420 Ok(())
421}
422
423pub fn is_row_function(expr: &ExprImpl) -> bool {
424 if let ExprImpl::FunctionCall(func) = expr {
425 if func.func_type() == ExprType::Row {
426 return true;
427 }
428 }
429 false
430}