risingwave_frontend/optimizer/delta_join_solver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! The solver for delta join, which determines lookup order of a join plan.
//! All collection types in this module should be `BTree` to ensure determinism between runs.
//!
//! # Representation of Multi-Way Join
//!
//! In this module, `a*` means lookup executor that looks-up the arrangement `a` of the current
//! epoch. `a` means looks-up arrangement `a` of the previous epoch.
//!
//! Delta joins only support inner equal join. The solver is based on the following formula (take
//! 3-way join as an example):
//!
//! ```plain
//! d((A join1 B) join2 C)
//! = ((A + dA) join1 (B + dB)) join2 (C + dC) - A join1 B join2 C
//! = (A join1 B + A join1 dB + dA join1 (B + dB)) join2 (C + dC) - A join1 B join2 C
//! = A join1 B join2 (C + dC) + A join1 dB join2 (C + dC) + dA join1 (B + dB) join2 (C + dC) - A join1 B join2 C
//! = A join1 B join2 dC + A join1 dB join2 (C + dC) + dA join1 (B + dB) join2 (C + dC)
//! = dA join1 (B + dB) join2 (C + dC) + dB join1 A join2 (C + dC) + dC join2 B join1 A
//!
//! join1 means A join B using condition #1,
//! join2 means B join C using condition #2.
//! ```
//!
//! Inner joins satisfy commutative law and associative laws, so we can switch them back and forth
//! between joins.
//!
//! ... which generates the following look-up graph:
//!
//! ```plain
//! a -> b* -> c* -> output3
//! b -> a -> c* -> output2
//! c -> b -> a -> output1
//! ```
//!
//! And the final output is `output1 <concat> output2 <concat> output3`. The concatenation is
//! ordered: all items from output 1 must appear before output 2.
//!
//! TODO: support dynamic filter and filter condition in lookups.
//!
//! # What need the caller do?
//!
//! After solving the delta join plan, caller will need to do a lot of things.
//!
//! * Use the correct index for every stream input. By looking at the first lookup fragment in each
//! row, we can decide whether to use `a.x` or `a.y` as index for stream input.
//! * Insert exchanges between lookups of different distribution. Generally, if the whole row is
//! operating on the same join key, we only need to do 1v1 exchanges between lookups. However, it
//! would be possible that a row of lookup first join `a.x == b.x`, then `a.y == c.y`. In this
//! case, we will need to insert hash exchange between these two lookups.
//! * Ensure the order of union. Always union from the last row to the first row.
//! * Insert exchange before union. Still the case for `a.x == b.x`, then `a.y == c.y`, it is
//! possible that every lookup path produces different distribution. We need to shuffle them
//! before feeding data to union.
// FIXME: https://github.com/rust-lang/rust-analyzer/issues/17685
#![allow(dead_code)]
use std::collections::{BTreeMap, BTreeSet};
use anyhow::{anyhow, Result};
use itertools::Itertools;
#[derive(Debug, Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
pub struct JoinTable(pub usize);
/// Represents whether `left` and `right` can be joined using a condition.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct JoinEdge {
pub left: JoinTable,
pub right: JoinTable,
pub left_join_key: Vec<usize>,
pub right_join_key: Vec<usize>,
}
impl JoinEdge {
/// Reverse the order of the edge.
pub fn reverse(&self) -> Self {
Self {
left: self.right,
right: self.left,
left_join_key: self.right_join_key.clone(),
right_join_key: self.left_join_key.clone(),
}
}
}
/// Decides how to place arrangements over lookup nodes. Given a 3-way join example:
///
/// ```plain
/// a -> 1* -> 2* ->
/// b -> 3 -> 4* ->
/// c -> 5 -> 6 ->
/// ```
///
/// If user provides the multi-way join order of `(a join b) join c`, and set the strategy to be
/// [`ArrangeStrategy::LeftFirst`], and if three tables are of the same join key (the graph is
/// fully-connected and no shuffle needed), then we will place the arrangements over the lookup
/// nodes in the following way:
///
/// ```plain
/// a -> b* -> c* ->
/// b -> a -> c* ->
/// c -> a -> b ->
/// ```
///
/// The left side of joins will be preferred for the left lookups when selecting arrangements.
///
/// If strategy is set to [`ArrangeStrategy::RightFirst`],
///
/// ```plain
/// a -> c* -> b* ->
/// b -> c -> a* ->
/// c -> b -> a ->
/// ```
///
/// The right side of joins will be preferred for the left lookups when selecting arrangements.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum ArrangeStrategy {
/// The left-most table will be preferred to be the first lookup table.
LeftFirst,
/// The right-most table will be preferred to be the first lookup table.
RightFirst,
}
/// Decides how to place stream inputs. Given a 3-way join example:
///
/// ```plain
/// x -> 1* -> 2* ->
/// x -> 3 -> 4* ->
/// x -> 5 -> 6 ->
/// ```
///
/// ... where `n*` means lookup this epoch. If user provides the multi-way join order of `(a join b)
/// join c`, and set the strategy to be [`StreamStrategy::LeftThisEpoch`], then we will place the
/// stream side as:
///
/// ```plain
/// a -> 1* -> 2* ->
/// b -> 3 -> 4* ->
/// c -> 5 -> 6 ->
/// ```
///
/// ... where `a`, the left-most table in multi-way join, passes through most number of
/// lookup-this-epoch.
///
/// If strategy is set to [`StreamStrategy::RightThisEpoch`],
///
/// ```plain
/// c -> 1* -> 2* ->
/// b -> 3 -> 4* ->
/// a -> 5 -> 6 ->
/// ```
///
/// ... where `c`, the right-most table in multi-way join, passes through most number of
/// lookup-this-epoch.
///
/// More lookup-this-epochs in a lookup row mean more latency when a barrier is flushed. If lookup
/// executor is set to lookup this epoch, it will wait until a barrier from the arrangement side
/// before actually starting lookups and joins.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum StreamStrategy {
/// The left-most table will be preferred to be the stream to lookup this epoch.
LeftThisEpoch,
/// The right-most table will be preferred to be the stream to lookup this epoch.
RightThisEpoch,
}
/// Given a multi-way inner join plan, the solver will produces the most efficient way of getting
/// those join done.
///
/// ## Input
///
/// [`DeltaJoinSolver`] needs the information of the cost of joining two tables. You'll need to
/// provide edges of the join graph. Each [`JoinEdge`] `(a, b) -> cost` describes the cost of inner
/// join a and b.
///
/// ## Output
///
/// The `solve` function will return a vector of [`LookupPath`]. See [`LookupPath`] for more.
pub struct DeltaJoinSolver {
/// Strategy of arrangement placement, see docs of [`ArrangeStrategy`] for more details.
arrange_strategy: ArrangeStrategy,
/// Strategy of stream placement, see docs of [`StreamStrategy`] for more details.
stream_strategy: StreamStrategy,
/// Possible combination of joins. If `(a, b)` is in `edges`, then `a` and `b` can be joined.
/// The edge is bi-directional, so only one pair (either `a, b` or `b, a`) needs to be present
/// in this vector.
edges: Vec<JoinEdge>,
/// The recommended join order from optimizer in a multi-way join plan node.
join_order: Vec<JoinTable>,
}
/// A row in the lookup plan, which includes the stream side arrangement, and all arrangements to be
/// placed in the lookup node.
///
/// For example, if we have `LookupPath(a, vec![b, c])`, then we have a row:
///
/// ```plain
/// a -> b -> c
/// ```
///
/// In `Vec<LookupPath>`, the first row always contains the most lookup-this-epochs. For example, if
/// we have:
///
/// ```plain
/// vec![
/// LookupPath(a, vec![b, c]),
/// LookupPath(b, vec![c, a]),
/// LookupPath(c, vec![a, b])
/// ]
/// ```
///
/// Then it means...
///
/// ```plain
/// a -> b* -> c* ->
/// b -> c -> a* ->
/// c -> a -> b ->
/// ```
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct LookupPath(JoinTable, pub Vec<JoinTable>);
struct SolverEnv {
/// Stores all join edges in map. [`JoinEdge`]'s left side is always the key in map.
join_edge: BTreeMap<JoinTable, Vec<JoinEdge>>,
/// Placement order of arrangements
arrange_placement_order: Vec<JoinTable>,
/// Placement order of streams
stream_placement_order: Vec<JoinTable>,
}
impl SolverEnv {
fn build_from(solver: &DeltaJoinSolver) -> Self {
let mut join_edge = BTreeMap::new();
for table in &solver.join_order {
join_edge.insert(*table, vec![]);
}
for edge in &solver.edges {
join_edge.get_mut(&edge.left).unwrap().push(edge.clone());
join_edge.get_mut(&edge.right).unwrap().push(edge.reverse());
}
Self {
arrange_placement_order: match solver.arrange_strategy {
ArrangeStrategy::LeftFirst => solver.join_order.clone(),
ArrangeStrategy::RightFirst => {
solver.join_order.iter().copied().rev().collect_vec()
}
},
stream_placement_order: match solver.stream_strategy {
StreamStrategy::LeftThisEpoch => solver.join_order.clone(),
StreamStrategy::RightThisEpoch => {
solver.join_order.iter().copied().rev().collect_vec()
}
},
join_edge,
}
}
}
impl DeltaJoinSolver {
/// Generate a lookup path using the user provided strategy. The lookup path is generated in the
/// following way:
///
/// * Firstly, we find all tables that can be joined with the current join table set. The tables
/// should have the same join key as the current join set.
/// * If there are multiple tables that satisfy this condition, we will pick tables according to
/// [`ArrangeStrategy`].
/// * If not, then we have to do a shuffle. We pick all tables that have join condition with the
/// current table set.
/// * And then pick a table using [`ArrangeStrategy`].
///
/// Basically, this algorithm will greedily pick all tables with the same join key first (so
/// that there won't be shuffle). Then, switch a distribution, and do this process again.
fn find_lookup_path(
&self,
solver_env: &SolverEnv,
input_stream: JoinTable,
) -> Result<LookupPath> {
// The table available to query
let mut current_table_set = BTreeSet::new();
current_table_set.insert(input_stream);
// The distribution of the current lookup.
let mut current_distribution = vec![];
// The final lookup path.
let mut path = vec![];
fn satisfies_distribution(
current_distribution: &[(JoinTable, Vec<usize>)],
edge: &JoinEdge,
) -> bool {
// TODO: if `current_distribution` is a `BTreeSet`, we can know if the distribution in
// O(1). But as we generally have few tables, so we do a linear scan on tables.
if current_distribution.is_empty() {
return true;
}
for (table, join_key) in current_distribution {
if table == &edge.left && join_key == &edge.left_join_key {
return true;
}
}
false
}
'next_table: loop {
assert!(
path.len() < self.join_order.len(),
"internal error: infinite loop"
);
// step 1: find tables that can be joined with `current_table_set` and satisfy the
// current distribution.
let mut reachable_tables = BTreeMap::new();
for current_table in ¤t_table_set {
for edge in &solver_env.join_edge[current_table] {
if !current_table_set.contains(&edge.right)
&& satisfies_distribution(¤t_distribution, edge)
{
reachable_tables.insert(edge.right, edge.clone());
}
}
}
// step 2: place arrangements according to the arrange strategy, update current
// distribution and current table set.
for table in &solver_env.arrange_placement_order {
if let Some(edge) = reachable_tables.get(table) {
current_table_set.insert(edge.right);
path.push(edge.right);
current_distribution.push((edge.right, edge.right_join_key.clone()));
continue 'next_table;
}
}
// no table can be joined using the same distribution at this point.
// step 3: find all tables that can be joined with `current_table_set`, regardless of
// their distribution.
let mut reachable_tables = BTreeMap::new();
for current_table in ¤t_table_set {
for edge in &solver_env.join_edge[current_table] {
if !current_table_set.contains(&edge.right) {
reachable_tables.insert(edge.right, edge.clone());
}
}
}
// step 4: place arrangements according to the arrange strategy, update current
// distribution and current table set.
for table in &solver_env.arrange_placement_order {
if let Some(edge) = reachable_tables.get(table) {
current_table_set.insert(edge.right);
path.push(edge.right);
current_distribution.clear();
current_distribution.push((edge.right, edge.right_join_key.clone()));
continue 'next_table;
}
}
// step 5: no tables can be joined any more, what happened?
if self.join_order.len() - 1 == path.len() {
break;
} else {
// no table can be joined, while path is still incomplete
return Err(anyhow!(
"join plan cannot be generated, tables not connected."
));
}
}
Ok(LookupPath(input_stream, path))
}
pub fn solve(&self) -> Result<Vec<LookupPath>> {
let solver_env = SolverEnv::build_from(self);
solver_env
.stream_placement_order
.iter()
.map(|x| self.find_lookup_path(&solver_env, *x))
.collect()
}
pub fn new(
stream_strategy: StreamStrategy,
edges: Vec<JoinEdge>,
join_order: Vec<JoinTable>,
) -> Self {
Self {
stream_strategy,
edges,
join_order,
arrange_strategy: ArrangeStrategy::LeftFirst,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_2way_join() {
let solver = DeltaJoinSolver {
arrange_strategy: ArrangeStrategy::LeftFirst,
stream_strategy: StreamStrategy::LeftThisEpoch,
edges: vec![JoinEdge {
left: JoinTable(1),
right: JoinTable(2),
left_join_key: vec![2, 3],
right_join_key: vec![3, 2],
}],
join_order: vec![JoinTable(1), JoinTable(2)],
};
let result = solver.solve().unwrap();
assert_eq!(
result,
vec![
LookupPath(JoinTable(1), vec![JoinTable(2)]),
LookupPath(JoinTable(2), vec![JoinTable(1)]),
]
);
let solver = DeltaJoinSolver {
arrange_strategy: ArrangeStrategy::RightFirst,
stream_strategy: StreamStrategy::LeftThisEpoch,
edges: vec![JoinEdge {
left: JoinTable(1),
right: JoinTable(2),
left_join_key: vec![2, 3],
right_join_key: vec![3, 2],
}],
join_order: vec![JoinTable(1), JoinTable(2)],
};
let result = solver.solve().unwrap();
assert_eq!(
result,
vec![
LookupPath(JoinTable(1), vec![JoinTable(2)]),
LookupPath(JoinTable(2), vec![JoinTable(1)]),
]
);
let solver = DeltaJoinSolver {
arrange_strategy: ArrangeStrategy::LeftFirst,
stream_strategy: StreamStrategy::RightThisEpoch,
edges: vec![JoinEdge {
left: JoinTable(1),
right: JoinTable(2),
left_join_key: vec![2, 3],
right_join_key: vec![3, 2],
}],
join_order: vec![JoinTable(1), JoinTable(2)],
};
let result = solver.solve().unwrap();
assert_eq!(
result,
vec![
LookupPath(JoinTable(2), vec![JoinTable(1)]),
LookupPath(JoinTable(1), vec![JoinTable(2)]),
]
);
let solver = DeltaJoinSolver {
arrange_strategy: ArrangeStrategy::RightFirst,
stream_strategy: StreamStrategy::RightThisEpoch,
edges: vec![JoinEdge {
left: JoinTable(1),
right: JoinTable(2),
left_join_key: vec![2, 3],
right_join_key: vec![3, 2],
}],
join_order: vec![JoinTable(1), JoinTable(2)],
};
let result = solver.solve().unwrap();
assert_eq!(
result,
vec![
LookupPath(JoinTable(2), vec![JoinTable(1)]),
LookupPath(JoinTable(1), vec![JoinTable(2)]),
]
);
}
#[test]
fn test_3way_join_one_key() {
// Table 1: [2, 3] (composite key x)
// Table 2: [3, 2] (composite key x)
// Table 3: [1, 1] (composite key x)
// t1.x == t2.x == t3.x
let solver = DeltaJoinSolver {
arrange_strategy: ArrangeStrategy::LeftFirst,
stream_strategy: StreamStrategy::LeftThisEpoch,
edges: vec![
JoinEdge {
left: JoinTable(1),
right: JoinTable(2),
left_join_key: vec![2, 3],
right_join_key: vec![3, 2],
},
JoinEdge {
left: JoinTable(2),
right: JoinTable(3),
left_join_key: vec![3, 2],
right_join_key: vec![1, 1],
},
JoinEdge {
left: JoinTable(3),
right: JoinTable(1),
left_join_key: vec![1, 1],
right_join_key: vec![2, 3],
},
],
join_order: vec![JoinTable(1), JoinTable(2), JoinTable(3)],
};
let result = solver.solve().unwrap();
assert_eq!(
result,
vec![
LookupPath(JoinTable(1), vec![JoinTable(2), JoinTable(3)]),
LookupPath(JoinTable(2), vec![JoinTable(1), JoinTable(3)]),
LookupPath(JoinTable(3), vec![JoinTable(1), JoinTable(2)])
]
);
}
#[test]
fn test_3way_join_two_keys() {
// Table 1: [0] (key x)
// Table 2: [0] (key x), [1] (key y)
// Table 3: [1] (key y)
// t1.x == t2.x and t2.y == t3.y
//
// t1 cannot directly join with t3 in this case, as they don't share the same key
let solver = DeltaJoinSolver {
arrange_strategy: ArrangeStrategy::LeftFirst,
stream_strategy: StreamStrategy::LeftThisEpoch,
edges: vec![
JoinEdge {
left: JoinTable(1),
right: JoinTable(2),
left_join_key: vec![0],
right_join_key: vec![0],
},
JoinEdge {
left: JoinTable(2),
right: JoinTable(3),
left_join_key: vec![1],
right_join_key: vec![1],
},
],
join_order: vec![JoinTable(1), JoinTable(2), JoinTable(3)],
};
let result = solver.solve().unwrap();
assert_eq!(
result,
vec![
LookupPath(JoinTable(1), vec![JoinTable(2), JoinTable(3)]),
LookupPath(JoinTable(2), vec![JoinTable(1), JoinTable(3)]),
LookupPath(JoinTable(3), vec![JoinTable(2), JoinTable(1)])
]
);
}
#[test]
fn test_invalid_plan() {
let solver = DeltaJoinSolver {
arrange_strategy: ArrangeStrategy::LeftFirst,
stream_strategy: StreamStrategy::LeftThisEpoch,
edges: vec![JoinEdge {
left: JoinTable(1),
right: JoinTable(2),
left_join_key: vec![0],
right_join_key: vec![0],
}],
join_order: vec![JoinTable(1), JoinTable(2), JoinTable(3)],
};
let result = solver.solve();
assert!(result.is_err());
}
}