risingwave_frontend/optimizer/
mod.rs

1// Copyright 2022 RisingWave Labs
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15use std::num::NonZeroU32;
16use std::ops::DerefMut;
17use std::sync::Arc;
18
19use risingwave_pb::catalog::PbVectorIndexInfo;
20
21pub mod plan_node;
22
23use plan_node::StreamFilter;
24pub use plan_node::{Explain, LogicalPlanRef, PlanRef};
25
26pub mod property;
27
28mod delta_join_solver;
29mod heuristic_optimizer;
30mod plan_rewriter;
31
32mod plan_visitor;
33
34#[cfg(feature = "datafusion")]
35pub use plan_visitor::DataFusionExecuteCheckerExt;
36pub use plan_visitor::{
37    ExecutionModeDecider, PlanVisitor, RelationCollectorVisitor, SysTableVisitor,
38};
39use risingwave_pb::plan_common::source_refresh_mode::RefreshMode;
40
41pub mod backfill_order_strategy;
42mod logical_optimization;
43mod optimizer_context;
44pub mod plan_expr_rewriter;
45mod plan_expr_visitor;
46mod rule;
47
48use std::collections::{BTreeMap, HashMap};
49use std::marker::PhantomData;
50
51use educe::Educe;
52use fixedbitset::FixedBitSet;
53use itertools::Itertools as _;
54pub use logical_optimization::*;
55pub use optimizer_context::*;
56use plan_expr_rewriter::ConstEvalRewriter;
57use property::Order;
58use risingwave_common::bail;
59use risingwave_common::catalog::{ColumnCatalog, ColumnDesc, ConflictBehavior, Field, Schema};
60use risingwave_common::types::DataType;
61use risingwave_common::util::column_index_mapping::ColIndexMapping;
62use risingwave_common::util::iter_util::ZipEqDebug;
63use risingwave_connector::WithPropertiesExt;
64use risingwave_connector::sink::catalog::SinkFormatDesc;
65use risingwave_pb::stream_plan::StreamScanType;
66
67use self::heuristic_optimizer::ApplyOrder;
68use self::plan_node::generic::{self, PhysicalPlanRef};
69use self::plan_node::{
70    BatchProject, LogicalProject, LogicalSource, PartitionComputeInfo, StreamDml,
71    StreamMaterialize, StreamProject, StreamRowIdGen, StreamSink, StreamWatermarkFilter,
72    ToStreamContext, stream_enforce_eowc_requirement,
73};
74#[cfg(debug_assertions)]
75use self::plan_visitor::InputRefValidator;
76use self::plan_visitor::{CardinalityVisitor, StreamKeyChecker, has_batch_exchange};
77use self::property::{Cardinality, RequiredDist};
78use self::rule::*;
79use crate::TableCatalog;
80use crate::catalog::table_catalog::TableType;
81use crate::catalog::{DatabaseId, SchemaId};
82use crate::error::{ErrorCode, Result};
83use crate::expr::TimestamptzExprFinder;
84use crate::handler::create_table::{CreateTableInfo, CreateTableProps};
85use crate::optimizer::plan_node::generic::{GenericPlanRef, SourceNodeKind, Union};
86use crate::optimizer::plan_node::{
87    BackfillType, Batch, BatchExchange, BatchPlanNodeType, BatchPlanRef, ConventionMarker,
88    PlanTreeNode, Stream, StreamExchange, StreamPlanRef, StreamUnion, StreamUpstreamSinkUnion,
89    StreamVectorIndexWrite, ToStream, VisitExprsRecursive,
90};
91use crate::optimizer::plan_visitor::{
92    LocalityProviderCounter, RwTimestampValidator, TemporalJoinValidator,
93};
94use crate::optimizer::property::Distribution;
95use crate::utils::{ColIndexMappingRewriteExt, WithOptionsSecResolved};
96
97/// `PlanRoot` is used to describe a plan. planner will construct a `PlanRoot` with `LogicalNode`.
98/// and required distribution and order. And `PlanRoot` can generate corresponding streaming or
99/// batch plan with optimization. the required Order and Distribution columns might be more than the
100/// output columns. for example:
101/// ```sql
102///    select v1 from t order by id;
103/// ```
104/// the plan will return two columns (id, v1), and the required order column is id. the id
105/// column is required in optimization, but the final generated plan will remove the unnecessary
106/// column in the result.
107#[derive(Educe)]
108#[educe(Debug, Clone)]
109pub struct PlanRoot<P: PlanPhase> {
110    // The current plan node.
111    pub plan: PlanRef<P::Convention>,
112    // The phase of the plan.
113    #[educe(Debug(ignore), Clone(method(PhantomData::clone)))]
114    _phase: PhantomData<P>,
115    required_dist: RequiredDist,
116    required_order: Order,
117    out_fields: FixedBitSet,
118    out_names: Vec<String>,
119}
120
121/// `PlanPhase` is used to track the phase of the `PlanRoot`.
122/// Usually, it begins from `Logical` and ends with `Batch` or `Stream`, unless we want to construct a `PlanRoot` from an intermediate phase.
123/// Typical phase transformation are:
124/// - `Logical` -> `OptimizedLogicalForBatch` -> `Batch`
125/// - `Logical` -> `OptimizedLogicalForStream` -> `Stream`
126pub trait PlanPhase {
127    type Convention: ConventionMarker;
128}
129
130macro_rules! for_all_phase {
131    () => {
132        for_all_phase! {
133            { Logical, $crate::optimizer::plan_node::Logical },
134            { BatchOptimizedLogical, $crate::optimizer::plan_node::Logical },
135            { StreamOptimizedLogical, $crate::optimizer::plan_node::Stream },
136            { Batch, $crate::optimizer::plan_node::Batch },
137            { Stream, $crate::optimizer::plan_node::Stream }
138        }
139    };
140    ($({$phase:ident, $convention:ty}),+ $(,)?) => {
141        $(
142            paste::paste! {
143                pub struct [< PlanPhase$phase >];
144                impl PlanPhase for [< PlanPhase$phase >] {
145                    type Convention = $convention;
146                }
147                pub type [< $phase PlanRoot >] = PlanRoot<[< PlanPhase$phase >]>;
148            }
149        )+
150    }
151}
152
153for_all_phase!();
154
155impl LogicalPlanRoot {
156    pub fn new_with_logical_plan(
157        plan: LogicalPlanRef,
158        required_dist: RequiredDist,
159        required_order: Order,
160        out_fields: FixedBitSet,
161        out_names: Vec<String>,
162    ) -> Self {
163        Self::new_inner(plan, required_dist, required_order, out_fields, out_names)
164    }
165}
166
167impl BatchPlanRoot {
168    pub fn new_with_batch_plan(
169        plan: BatchPlanRef,
170        required_dist: RequiredDist,
171        required_order: Order,
172        out_fields: FixedBitSet,
173        out_names: Vec<String>,
174    ) -> Self {
175        Self::new_inner(plan, required_dist, required_order, out_fields, out_names)
176    }
177}
178
179impl<P: PlanPhase> PlanRoot<P> {
180    fn new_inner(
181        plan: PlanRef<P::Convention>,
182        required_dist: RequiredDist,
183        required_order: Order,
184        out_fields: FixedBitSet,
185        out_names: Vec<String>,
186    ) -> Self {
187        let input_schema = plan.schema();
188        assert_eq!(input_schema.fields().len(), out_fields.len());
189        assert_eq!(out_fields.count_ones(..), out_names.len());
190
191        Self {
192            plan,
193            _phase: PhantomData,
194            required_dist,
195            required_order,
196            out_fields,
197            out_names,
198        }
199    }
200
201    fn into_phase<P2: PlanPhase>(self, plan: PlanRef<P2::Convention>) -> PlanRoot<P2> {
202        PlanRoot {
203            plan,
204            _phase: PhantomData,
205            required_dist: self.required_dist,
206            required_order: self.required_order,
207            out_fields: self.out_fields,
208            out_names: self.out_names,
209        }
210    }
211
212    /// Set customized names of the output fields, used for `CREATE [MATERIALIZED VIEW | SINK] r(a,
213    /// b, ..)`.
214    ///
215    /// If the number of names does not match the number of output fields, an error is returned.
216    pub fn set_out_names(&mut self, out_names: Vec<String>) -> Result<()> {
217        if out_names.len() != self.out_fields.count_ones(..) {
218            Err(ErrorCode::InvalidInputSyntax(
219                "number of column names does not match number of columns".to_owned(),
220            ))?
221        }
222        self.out_names = out_names;
223        Ok(())
224    }
225
226    /// Get the plan root's schema, only including the fields to be output.
227    pub fn schema(&self) -> Schema {
228        // The schema can be derived from the `out_fields` and `out_names`, so we don't maintain it
229        // as a field and always construct one on demand here to keep it in sync.
230        Schema {
231            fields: self
232                .out_fields
233                .ones()
234                .map(|i| self.plan.schema().fields()[i].clone())
235                .zip_eq_debug(&self.out_names)
236                .map(|(field, name)| Field {
237                    name: name.clone(),
238                    ..field
239                })
240                .collect(),
241        }
242    }
243}
244
245impl LogicalPlanRoot {
246    /// Transform the [`PlanRoot`] back to a [`PlanRef`] suitable to be used as a subplan, for
247    /// example as insert source or subquery. This ignores Order but retains post-Order pruning
248    /// (`out_fields`).
249    pub fn into_unordered_subplan(self) -> LogicalPlanRef {
250        if self.out_fields.count_ones(..) == self.out_fields.len() {
251            return self.plan;
252        }
253        LogicalProject::with_out_fields(self.plan, &self.out_fields).into()
254    }
255
256    /// Transform the [`PlanRoot`] wrapped in an array-construction subquery to a [`PlanRef`]
257    /// supported by `ARRAY_AGG`. Similar to the unordered version, this abstracts away internal
258    /// `self.plan` which is further modified by `self.required_order` then `self.out_fields`.
259    pub fn into_array_agg(self) -> Result<LogicalPlanRef> {
260        use generic::Agg;
261        use plan_node::PlanAggCall;
262        use risingwave_common::types::ListValue;
263        use risingwave_expr::aggregate::PbAggKind;
264
265        use crate::expr::{ExprImpl, ExprType, FunctionCall, InputRef};
266        use crate::utils::{Condition, IndexSet};
267
268        let Ok(select_idx) = self.out_fields.ones().exactly_one() else {
269            bail!("subquery must return only one column");
270        };
271        let input_column_type = self.plan.schema().fields()[select_idx].data_type();
272        let return_type = DataType::list(input_column_type.clone());
273        let agg = Agg::new(
274            vec![PlanAggCall {
275                agg_type: PbAggKind::ArrayAgg.into(),
276                return_type: return_type.clone(),
277                inputs: vec![InputRef::new(select_idx, input_column_type.clone())],
278                distinct: false,
279                order_by: self.required_order.column_orders,
280                filter: Condition::true_cond(),
281                direct_args: vec![],
282            }],
283            IndexSet::empty(),
284            self.plan,
285        );
286        Ok(LogicalProject::create(
287            agg.into(),
288            vec![
289                FunctionCall::new(
290                    ExprType::Coalesce,
291                    vec![
292                        InputRef::new(0, return_type).into(),
293                        ExprImpl::literal_list(
294                            ListValue::empty(&input_column_type),
295                            input_column_type,
296                        ),
297                    ],
298                )
299                .unwrap()
300                .into(),
301            ],
302        ))
303    }
304
305    /// Apply logical optimization to the plan for stream.
306    pub fn gen_optimized_logical_plan_for_stream(mut self) -> Result<LogicalPlanRoot> {
307        self.plan = LogicalOptimizer::gen_optimized_logical_plan_for_stream(self.plan.clone())?;
308        Ok(self)
309    }
310
311    /// Apply logical optimization to the plan for batch.
312    pub fn gen_optimized_logical_plan_for_batch(self) -> Result<BatchOptimizedLogicalPlanRoot> {
313        let plan = LogicalOptimizer::gen_optimized_logical_plan_for_batch(self.plan.clone())?;
314        Ok(self.into_phase(plan))
315    }
316
317    pub fn gen_batch_plan(self) -> Result<BatchPlanRoot> {
318        self.gen_optimized_logical_plan_for_batch()?
319            .gen_batch_plan()
320    }
321}
322
323impl BatchOptimizedLogicalPlanRoot {
324    /// Optimize and generate a singleton batch physical plan without exchange nodes.
325    pub fn gen_batch_plan(self) -> Result<BatchPlanRoot> {
326        if TemporalJoinValidator::exist_dangling_temporal_scan(self.plan.clone()) {
327            return Err(ErrorCode::NotSupported(
328                "do not support temporal join for batch queries".to_owned(),
329                "please use temporal join in streaming queries".to_owned(),
330            )
331            .into());
332        }
333
334        let ctx = self.plan.ctx();
335        // Inline session timezone mainly for rewriting now()
336        let mut plan = inline_session_timezone_in_exprs(ctx.clone(), self.plan.clone())?;
337
338        // Const eval of exprs at the last minute, but before `to_batch` to make functional index selection happy.
339        plan = const_eval_exprs(plan)?;
340
341        if ctx.is_explain_trace() {
342            ctx.trace("Const eval exprs:");
343            ctx.trace(plan.explain_to_string());
344        }
345
346        // Convert to physical plan node
347        let mut plan = plan.to_batch_with_order_required(&self.required_order)?;
348        if ctx.is_explain_trace() {
349            ctx.trace("To Batch Plan:");
350            ctx.trace(plan.explain_to_string());
351        }
352
353        plan = plan.optimize_by_rules(&OptimizationStage::<Batch>::new(
354            "Merge BatchProject",
355            vec![BatchProjectMergeRule::create()],
356            ApplyOrder::BottomUp,
357        ))?;
358
359        // Inline session timezone
360        plan = inline_session_timezone_in_exprs(ctx.clone(), plan)?;
361
362        if ctx.is_explain_trace() {
363            ctx.trace("Inline Session Timezone:");
364            ctx.trace(plan.explain_to_string());
365        }
366
367        #[cfg(debug_assertions)]
368        InputRefValidator.validate(plan.clone());
369        assert_eq!(
370            *plan.distribution(),
371            Distribution::Single,
372            "{}",
373            plan.explain_to_string()
374        );
375        assert!(
376            !has_batch_exchange(plan.clone()),
377            "{}",
378            plan.explain_to_string()
379        );
380
381        let ctx = plan.ctx();
382        if ctx.is_explain_trace() {
383            ctx.trace("To Batch Physical Plan:");
384            ctx.trace(plan.explain_to_string());
385        }
386
387        Ok(self.into_phase(plan))
388    }
389
390    #[cfg(feature = "datafusion")]
391    pub fn gen_datafusion_logical_plan(self) -> Result<Arc<datafusion::logical_expr::LogicalPlan>> {
392        use datafusion::logical_expr::{Expr as DFExpr, LogicalPlan, Projection, Sort};
393        use datafusion_common::Column;
394        use plan_visitor::LogicalPlanToDataFusionExt;
395
396        use crate::datafusion::{InputColumns, convert_column_order};
397
398        tracing::debug!(
399            "Converting RisingWave logical plan to DataFusion plan:\nRisingWave Plan: {:?}",
400            self.plan
401        );
402
403        let ctx = self.plan.ctx();
404        // Inline session timezone mainly for rewriting now()
405        let mut plan = inline_session_timezone_in_exprs(ctx, self.plan.clone())?;
406        plan = const_eval_exprs(plan)?;
407
408        let mut df_plan = plan.to_datafusion_logical_plan()?;
409
410        if !self.required_order.is_any() {
411            let input_columns = InputColumns::new(df_plan.schema().as_ref(), plan.schema());
412            let expr = self
413                .required_order
414                .column_orders
415                .iter()
416                .map(|column_order| convert_column_order(column_order, &input_columns))
417                .collect_vec();
418            df_plan = Arc::new(LogicalPlan::Sort(Sort {
419                expr,
420                input: df_plan,
421                fetch: None,
422            }));
423        }
424
425        if self.out_names.len() < df_plan.schema().fields().len() {
426            let df_schema = df_plan.schema().as_ref();
427            let projection_exprs = self
428                .out_fields
429                .ones()
430                .zip_eq_debug(self.out_names.iter())
431                .map(|(i, name)| {
432                    DFExpr::Column(Column::from(df_schema.qualified_field(i))).alias(name)
433                })
434                .collect_vec();
435            df_plan = Arc::new(LogicalPlan::Projection(Projection::try_new(
436                projection_exprs,
437                df_plan,
438            )?));
439        }
440
441        tracing::debug!("Converted DataFusion plan:\nDataFusion Plan: {:?}", df_plan);
442
443        Ok(df_plan)
444    }
445}
446
447impl BatchPlanRoot {
448    /// Optimize and generate a batch query plan for distributed execution.
449    pub fn gen_batch_distributed_plan(mut self) -> Result<BatchPlanRef> {
450        self.required_dist = RequiredDist::single();
451        let mut plan = self.plan;
452
453        // Convert to distributed plan
454        plan = plan.to_distributed_with_required(&self.required_order, &self.required_dist)?;
455
456        let ctx = plan.ctx();
457        if ctx.is_explain_trace() {
458            ctx.trace("To Batch Distributed Plan:");
459            ctx.trace(plan.explain_to_string());
460        }
461        if require_additional_exchange_on_root_in_distributed_mode(plan.clone()) {
462            plan =
463                BatchExchange::new(plan, self.required_order.clone(), Distribution::Single).into();
464        }
465
466        // Add Project if the any position of `self.out_fields` is set to zero.
467        if self.out_fields.count_ones(..) != self.out_fields.len() {
468            plan =
469                BatchProject::new(generic::Project::with_out_fields(plan, &self.out_fields)).into();
470        }
471
472        // Both two phase limit and topn could generate limit on top of the scan, so we push limit here.
473        let plan = plan.optimize_by_rules(&OptimizationStage::new(
474            "Push Limit To Scan",
475            vec![BatchPushLimitToScanRule::create()],
476            ApplyOrder::BottomUp,
477        ))?;
478
479        Ok(plan)
480    }
481
482    /// Optimize and generate a batch query plan for local execution.
483    pub fn gen_batch_local_plan(self) -> Result<BatchPlanRef> {
484        let mut plan = self.plan;
485
486        // Convert to local plan node
487        plan = plan.to_local_with_order_required(&self.required_order)?;
488
489        // We remark that since the `to_local_with_order_required` does not enforce single
490        // distribution, we enforce at the root if needed.
491        let insert_exchange = match plan.distribution() {
492            Distribution::Single => require_additional_exchange_on_root_in_local_mode(plan.clone()),
493            _ => true,
494        };
495        if insert_exchange {
496            plan =
497                BatchExchange::new(plan, self.required_order.clone(), Distribution::Single).into()
498        }
499
500        // Add Project if the any position of `self.out_fields` is set to zero.
501        if self.out_fields.count_ones(..) != self.out_fields.len() {
502            plan =
503                BatchProject::new(generic::Project::with_out_fields(plan, &self.out_fields)).into();
504        }
505
506        let ctx = plan.ctx();
507        if ctx.is_explain_trace() {
508            ctx.trace("To Batch Local Plan:");
509            ctx.trace(plan.explain_to_string());
510        }
511
512        // Both two phase limit and topn could generate limit on top of the scan, so we push limit here.
513        let plan = plan.optimize_by_rules(&OptimizationStage::new(
514            "Push Limit To Scan",
515            vec![BatchPushLimitToScanRule::create()],
516            ApplyOrder::BottomUp,
517        ))?;
518
519        Ok(plan)
520    }
521}
522
523impl LogicalPlanRoot {
524    /// Generate optimized stream plan
525    fn gen_optimized_stream_plan(
526        self,
527        emit_on_window_close: bool,
528        allow_snapshot_backfill: bool,
529    ) -> Result<StreamOptimizedLogicalPlanRoot> {
530        let backfill_type = if allow_snapshot_backfill && self.should_use_snapshot_backfill() {
531            BackfillType::SnapshotBackfill
532        } else if self.should_use_arrangement_backfill() {
533            BackfillType::ArrangementBackfill
534        } else {
535            BackfillType::Backfill
536        };
537        self.gen_optimized_stream_plan_inner(emit_on_window_close, backfill_type)
538    }
539
540    fn gen_optimized_stream_plan_inner(
541        self,
542        emit_on_window_close: bool,
543        backfill_type: BackfillType,
544    ) -> Result<StreamOptimizedLogicalPlanRoot> {
545        let ctx = self.plan.ctx();
546        let _explain_trace = ctx.is_explain_trace();
547
548        let optimized_plan = self.gen_stream_plan(emit_on_window_close, backfill_type)?;
549
550        let mut plan = optimized_plan
551            .plan
552            .clone()
553            .optimize_by_rules(&OptimizationStage::new(
554                "Merge StreamProject",
555                vec![StreamProjectMergeRule::create()],
556                ApplyOrder::BottomUp,
557            ))?;
558
559        if ctx
560            .session_ctx()
561            .config()
562            .streaming_separate_consecutive_join()
563        {
564            plan = plan.optimize_by_rules(&OptimizationStage::new(
565                "Separate consecutive StreamHashJoin by no-shuffle StreamExchange",
566                vec![SeparateConsecutiveJoinRule::create()],
567                ApplyOrder::BottomUp,
568            ))?;
569        }
570
571        // Add Logstore for Unaligned join
572        // Apply this BEFORE delta join rule, because delta join removes
573        // the join
574        if ctx.session_ctx().config().streaming_enable_unaligned_join() {
575            plan = plan.optimize_by_rules(&OptimizationStage::new(
576                "Add Logstore for Unaligned join",
577                vec![AddLogstoreRule::create()],
578                ApplyOrder::BottomUp,
579            ))?;
580        }
581
582        if ctx.session_ctx().config().streaming_enable_delta_join()
583            && ctx.session_ctx().config().enable_index_selection()
584        {
585            // TODO: make it a logical optimization.
586            // Rewrite joins with index to delta join
587            plan = plan.optimize_by_rules(&OptimizationStage::new(
588                "To IndexDeltaJoin",
589                vec![IndexDeltaJoinRule::create()],
590                ApplyOrder::BottomUp,
591            ))?;
592        }
593        // Inline session timezone
594        plan = inline_session_timezone_in_exprs(ctx.clone(), plan)?;
595
596        if ctx.is_explain_trace() {
597            ctx.trace("Inline session timezone:");
598            ctx.trace(plan.explain_to_string());
599        }
600
601        // Const eval of exprs at the last minute
602        plan = const_eval_exprs(plan)?;
603
604        if ctx.is_explain_trace() {
605            ctx.trace("Const eval exprs:");
606            ctx.trace(plan.explain_to_string());
607        }
608
609        #[cfg(debug_assertions)]
610        InputRefValidator.validate(plan.clone());
611
612        if TemporalJoinValidator::exist_dangling_temporal_scan(plan.clone()) {
613            return Err(ErrorCode::NotSupported(
614                "exist dangling temporal scan".to_owned(),
615                "please check your temporal join syntax e.g. consider removing the right outer join if it is being used.".to_owned(),
616            ).into());
617        }
618
619        if RwTimestampValidator::select_rw_timestamp_in_stream_query(plan.clone()) {
620            return Err(ErrorCode::NotSupported(
621                "selecting `_rw_timestamp` in a streaming query is not allowed".to_owned(),
622                "please run the sql in batch mode or remove the column `_rw_timestamp` from the streaming query".to_owned(),
623            ).into());
624        }
625
626        if ctx.session_ctx().config().enable_locality_backfill()
627            && LocalityProviderCounter::count(plan.clone()) > 5
628        {
629            risingwave_common::license::Feature::LocalityBackfill.check_available()?
630        }
631
632        Ok(optimized_plan.into_phase(plan))
633    }
634
635    /// Generate create index or create materialize view plan.
636    fn gen_stream_plan(
637        self,
638        emit_on_window_close: bool,
639        backfill_type: BackfillType,
640    ) -> Result<StreamOptimizedLogicalPlanRoot> {
641        let ctx = self.plan.ctx();
642        let explain_trace = ctx.is_explain_trace();
643
644        let plan = {
645            {
646                if !ctx
647                    .session_ctx()
648                    .config()
649                    .streaming_allow_jsonb_in_stream_key()
650                    && let Some(err) = StreamKeyChecker.visit(self.plan.clone())
651                {
652                    return Err(ErrorCode::NotSupported(
653                        err,
654                        "Using JSONB columns as part of the join or aggregation keys can severely impair performance. \
655                        If you intend to proceed, force to enable it with: `set rw_streaming_allow_jsonb_in_stream_key to true`".to_owned(),
656                    ).into());
657                }
658                let mut optimized_plan = self.gen_optimized_logical_plan_for_stream()?;
659                let (plan, out_col_change) = {
660                    let (plan, out_col_change) = optimized_plan
661                        .plan
662                        .logical_rewrite_for_stream(&mut Default::default())?;
663                    if out_col_change.is_injective() {
664                        (plan, out_col_change)
665                    } else {
666                        let mut output_indices = (0..plan.schema().len()).collect_vec();
667                        #[allow(unused_assignments)]
668                        let (mut map, mut target_size) = out_col_change.into_parts();
669
670                        // TODO(st1page): https://github.com/risingwavelabs/risingwave/issues/7234
671                        // assert_eq!(target_size, output_indices.len());
672                        target_size = plan.schema().len();
673                        let mut tar_exists = vec![false; target_size];
674                        for i in map.iter_mut().flatten() {
675                            if tar_exists[*i] {
676                                output_indices.push(*i);
677                                *i = target_size;
678                                target_size += 1;
679                            } else {
680                                tar_exists[*i] = true;
681                            }
682                        }
683                        let plan =
684                            LogicalProject::with_out_col_idx(plan, output_indices.into_iter());
685                        let out_col_change = ColIndexMapping::new(map, target_size);
686                        (plan.into(), out_col_change)
687                    }
688                };
689
690                if explain_trace {
691                    ctx.trace("Logical Rewrite For Stream:");
692                    ctx.trace(plan.explain_to_string());
693                }
694
695                optimized_plan.required_dist =
696                    out_col_change.rewrite_required_distribution(&optimized_plan.required_dist);
697                optimized_plan.required_order = out_col_change
698                    .rewrite_required_order(&optimized_plan.required_order)
699                    .unwrap();
700                optimized_plan.out_fields =
701                    out_col_change.rewrite_bitset(&optimized_plan.out_fields);
702                let mut plan = plan.to_stream_with_dist_required(
703                    &optimized_plan.required_dist,
704                    &mut ToStreamContext::new_with_backfill_type(
705                        emit_on_window_close,
706                        backfill_type,
707                    ),
708                )?;
709                plan = stream_enforce_eowc_requirement(ctx.clone(), plan, emit_on_window_close)?;
710                optimized_plan.into_phase(plan)
711            }
712        };
713
714        if explain_trace {
715            ctx.trace("To Stream Plan:");
716            // TODO: can be `plan.plan.explain_to_string()`, but should explicitly specify the type due to some limitation of rust compiler
717            ctx.trace(<PlanRef<Stream> as Explain>::explain_to_string(&plan.plan));
718        }
719        Ok(plan)
720    }
721
722    /// Visit the plan root and compute the cardinality.
723    ///
724    /// Panics if not called on a logical plan.
725    fn compute_cardinality(&self) -> Cardinality {
726        CardinalityVisitor.visit(self.plan.clone())
727    }
728
729    /// Optimize and generate a create table plan.
730    pub fn gen_table_plan(
731        self,
732        context: OptimizerContextRef,
733        table_name: String,
734        database_id: DatabaseId,
735        schema_id: SchemaId,
736        CreateTableInfo {
737            columns,
738            pk_column_ids,
739            row_id_index,
740            watermark_descs,
741            source_catalog,
742            version,
743        }: CreateTableInfo,
744        CreateTableProps {
745            definition,
746            append_only,
747            on_conflict,
748            with_version_columns,
749            webhook_info,
750            engine,
751        }: CreateTableProps,
752    ) -> Result<StreamMaterialize> {
753        // Snapshot backfill is not allowed for create table
754        let stream_plan = self.gen_optimized_stream_plan(false, false)?;
755
756        assert!(!pk_column_ids.is_empty() || row_id_index.is_some());
757
758        let pk_column_indices = {
759            let mut id_to_idx = HashMap::new();
760
761            columns.iter().enumerate().for_each(|(idx, c)| {
762                id_to_idx.insert(c.column_id(), idx);
763            });
764            pk_column_ids
765                .iter()
766                .map(|c| id_to_idx.get(c).copied().unwrap()) // pk column id must exist in table columns.
767                .collect_vec()
768        };
769
770        fn inject_project_for_generated_column_if_needed(
771            columns: &[ColumnCatalog],
772            node: StreamPlanRef,
773        ) -> Result<StreamPlanRef> {
774            let exprs = LogicalSource::derive_output_exprs_from_generated_columns(columns)?;
775            if let Some(exprs) = exprs {
776                let logical_project = generic::Project::new(exprs, node);
777                return Ok(StreamProject::new(logical_project).into());
778            }
779            Ok(node)
780        }
781
782        #[derive(PartialEq, Debug, Copy, Clone)]
783        enum PrimaryKeyKind {
784            UserDefinedPrimaryKey,
785            NonAppendOnlyRowIdPk,
786            AppendOnlyRowIdPk,
787        }
788
789        fn inject_dml_node(
790            columns: &[ColumnCatalog],
791            append_only: bool,
792            stream_plan: StreamPlanRef,
793            pk_column_indices: &[usize],
794            kind: PrimaryKeyKind,
795            column_descs: Vec<ColumnDesc>,
796        ) -> Result<StreamPlanRef> {
797            let mut dml_node = StreamDml::new(stream_plan, append_only, column_descs).into();
798
799            // Add generated columns.
800            dml_node = inject_project_for_generated_column_if_needed(columns, dml_node)?;
801
802            dml_node = match kind {
803                PrimaryKeyKind::UserDefinedPrimaryKey | PrimaryKeyKind::NonAppendOnlyRowIdPk => {
804                    RequiredDist::hash_shard(pk_column_indices)
805                        .streaming_enforce_if_not_satisfies(dml_node)?
806                }
807                PrimaryKeyKind::AppendOnlyRowIdPk => {
808                    StreamExchange::new_no_shuffle(dml_node).into()
809                }
810            };
811
812            Ok(dml_node)
813        }
814
815        let kind = if let Some(row_id_index) = row_id_index {
816            assert_eq!(
817                pk_column_indices.iter().exactly_one().copied().unwrap(),
818                row_id_index
819            );
820            if append_only {
821                PrimaryKeyKind::AppendOnlyRowIdPk
822            } else {
823                PrimaryKeyKind::NonAppendOnlyRowIdPk
824            }
825        } else {
826            PrimaryKeyKind::UserDefinedPrimaryKey
827        };
828
829        let column_descs: Vec<ColumnDesc> = columns
830            .iter()
831            .filter(|&c| c.can_dml())
832            .map(|c| c.column_desc.clone())
833            .collect();
834
835        let mut not_null_idxs = vec![];
836        for (idx, column) in column_descs.iter().enumerate() {
837            if !column.nullable {
838                not_null_idxs.push(idx);
839            }
840        }
841
842        let version_column_indices = if !with_version_columns.is_empty() {
843            find_version_column_indices(&columns, with_version_columns)?
844        } else {
845            vec![]
846        };
847
848        let with_external_source = source_catalog.is_some();
849        let (dml_source_node, external_source_node) = if with_external_source {
850            let dummy_source_node = LogicalSource::new(
851                None,
852                columns.clone(),
853                row_id_index,
854                SourceNodeKind::CreateTable,
855                context.clone(),
856                None,
857            )
858            .and_then(|s| s.to_stream(&mut ToStreamContext::new(false)))?;
859            let mut external_source_node = stream_plan.plan;
860            external_source_node =
861                inject_project_for_generated_column_if_needed(&columns, external_source_node)?;
862            external_source_node = match kind {
863                PrimaryKeyKind::UserDefinedPrimaryKey => {
864                    RequiredDist::hash_shard(&pk_column_indices)
865                        .streaming_enforce_if_not_satisfies(external_source_node)?
866                }
867
868                PrimaryKeyKind::NonAppendOnlyRowIdPk | PrimaryKeyKind::AppendOnlyRowIdPk => {
869                    StreamExchange::new_no_shuffle(external_source_node).into()
870                }
871            };
872            (dummy_source_node, Some(external_source_node))
873        } else {
874            (stream_plan.plan, None)
875        };
876
877        let dml_node = inject_dml_node(
878            &columns,
879            append_only,
880            dml_source_node,
881            &pk_column_indices,
882            kind,
883            column_descs,
884        )?;
885
886        let dists = external_source_node
887            .iter()
888            .map(|input| input.distribution())
889            .chain([dml_node.distribution()])
890            .unique()
891            .collect_vec();
892
893        let dist = match &dists[..] {
894            &[Distribution::SomeShard, Distribution::HashShard(_)]
895            | &[Distribution::HashShard(_), Distribution::SomeShard] => Distribution::SomeShard,
896            &[dist @ Distribution::SomeShard] | &[dist @ Distribution::HashShard(_)] => {
897                dist.clone()
898            }
899            _ => {
900                unreachable!()
901            }
902        };
903
904        let generated_column_exprs =
905            LogicalSource::derive_output_exprs_from_generated_columns(&columns)?;
906        let upstream_sink_union = StreamUpstreamSinkUnion::new(
907            context.clone(),
908            dml_node.schema(),
909            dml_node.stream_key(),
910            dist.clone(), // should always be the same as dist of `Union`
911            append_only,
912            row_id_index.is_none(),
913            generated_column_exprs,
914        );
915
916        let union_inputs = external_source_node
917            .into_iter()
918            .chain([dml_node, upstream_sink_union.into()])
919            .collect_vec();
920
921        let mut stream_plan = StreamUnion::new_with_dist(
922            Union {
923                all: true,
924                inputs: union_inputs,
925                source_col: None,
926            },
927            dist,
928        )
929        .into();
930
931        let ttl_watermark_indices = watermark_descs
932            .iter()
933            .filter(|d| d.with_ttl)
934            .map(|d| d.watermark_idx as usize)
935            .collect_vec();
936
937        // Add WatermarkFilter node.
938        if !watermark_descs.is_empty() {
939            stream_plan = StreamWatermarkFilter::new(stream_plan, watermark_descs).into();
940        }
941
942        // Add RowIDGen node if needed.
943        if let Some(row_id_index) = row_id_index {
944            match kind {
945                PrimaryKeyKind::UserDefinedPrimaryKey => {
946                    unreachable!()
947                }
948                PrimaryKeyKind::NonAppendOnlyRowIdPk | PrimaryKeyKind::AppendOnlyRowIdPk => {
949                    stream_plan = StreamRowIdGen::new_with_dist(
950                        stream_plan,
951                        row_id_index,
952                        Distribution::HashShard(vec![row_id_index]),
953                    )
954                    .into();
955                }
956            }
957        }
958
959        let conflict_behavior = on_conflict.to_behavior(append_only, row_id_index.is_some())?;
960
961        if let ConflictBehavior::IgnoreConflict = conflict_behavior
962            && !version_column_indices.is_empty()
963        {
964            Err(ErrorCode::InvalidParameterValue(
965                "The with version column syntax cannot be used with the ignore behavior of on conflict".to_owned(),
966            ))?
967        }
968
969        let retention_seconds = context.with_options().retention_seconds();
970
971        let table_required_dist = {
972            let mut bitset = FixedBitSet::with_capacity(columns.len());
973            for idx in &pk_column_indices {
974                bitset.insert(*idx);
975            }
976            RequiredDist::ShardByKey(bitset)
977        };
978
979        let mut stream_plan = inline_session_timezone_in_exprs(context, stream_plan)?;
980
981        if !not_null_idxs.is_empty() {
982            stream_plan =
983                StreamFilter::filter_out_any_null_rows(stream_plan.clone(), &not_null_idxs);
984        }
985
986        // Determine if the table should be refreshable based on the connector type
987        let refreshable = source_catalog
988            .as_ref()
989            .map(|catalog| {
990                catalog.with_properties.is_batch_connector() || {
991                    matches!(
992                        catalog
993                            .refresh_mode
994                            .as_ref()
995                            .map(|refresh_mode| refresh_mode.refresh_mode),
996                        Some(Some(RefreshMode::FullReload(_)))
997                    )
998                }
999            })
1000            .unwrap_or(false);
1001
1002        // Validate that refreshable tables have a user-defined primary key (i.e., does not have rowid)
1003        if refreshable && row_id_index.is_some() {
1004            return Err(crate::error::ErrorCode::BindError(
1005                "Refreshable tables must have a PRIMARY KEY. Please define a primary key for the table."
1006                    .to_owned(),
1007            )
1008            .into());
1009        }
1010
1011        StreamMaterialize::create_for_table(
1012            stream_plan,
1013            table_name,
1014            database_id,
1015            schema_id,
1016            table_required_dist,
1017            Order::any(),
1018            columns,
1019            definition,
1020            conflict_behavior,
1021            version_column_indices,
1022            pk_column_indices,
1023            ttl_watermark_indices,
1024            row_id_index,
1025            version,
1026            retention_seconds,
1027            webhook_info,
1028            engine,
1029            refreshable,
1030        )
1031    }
1032
1033    /// Optimize and generate a create materialized view plan.
1034    pub fn gen_materialize_plan(
1035        self,
1036        database_id: DatabaseId,
1037        schema_id: SchemaId,
1038        mv_name: String,
1039        definition: String,
1040        emit_on_window_close: bool,
1041    ) -> Result<StreamMaterialize> {
1042        let cardinality = self.compute_cardinality();
1043        let stream_plan = self.gen_optimized_stream_plan(emit_on_window_close, true)?;
1044        StreamMaterialize::create(
1045            stream_plan,
1046            mv_name,
1047            database_id,
1048            schema_id,
1049            definition,
1050            TableType::MaterializedView,
1051            cardinality,
1052            None,
1053        )
1054    }
1055
1056    /// Optimize and generate a create index plan.
1057    pub fn gen_index_plan(
1058        self,
1059        index_name: String,
1060        database_id: DatabaseId,
1061        schema_id: SchemaId,
1062        definition: String,
1063        retention_seconds: Option<NonZeroU32>,
1064    ) -> Result<StreamMaterialize> {
1065        let cardinality = self.compute_cardinality();
1066        let stream_plan = self.gen_optimized_stream_plan(false, false)?;
1067
1068        StreamMaterialize::create(
1069            stream_plan,
1070            index_name,
1071            database_id,
1072            schema_id,
1073            definition,
1074            TableType::Index,
1075            cardinality,
1076            retention_seconds,
1077        )
1078    }
1079
1080    pub fn gen_vector_index_plan(
1081        self,
1082        index_name: String,
1083        database_id: DatabaseId,
1084        schema_id: SchemaId,
1085        definition: String,
1086        retention_seconds: Option<NonZeroU32>,
1087        vector_index_info: PbVectorIndexInfo,
1088    ) -> Result<StreamVectorIndexWrite> {
1089        let cardinality = self.compute_cardinality();
1090        let stream_plan = self.gen_optimized_stream_plan(false, false)?;
1091
1092        StreamVectorIndexWrite::create(
1093            stream_plan,
1094            index_name,
1095            database_id,
1096            schema_id,
1097            definition,
1098            cardinality,
1099            retention_seconds,
1100            vector_index_info,
1101        )
1102    }
1103
1104    /// Optimize and generate a create sink plan.
1105    #[expect(clippy::too_many_arguments)]
1106    pub fn gen_sink_plan(
1107        self,
1108        sink_name: String,
1109        definition: String,
1110        properties: WithOptionsSecResolved,
1111        emit_on_window_close: bool,
1112        db_name: String,
1113        sink_from_table_name: String,
1114        format_desc: Option<SinkFormatDesc>,
1115        without_backfill: bool,
1116        target_table: Option<Arc<TableCatalog>>,
1117        partition_info: Option<PartitionComputeInfo>,
1118        user_specified_columns: bool,
1119        auto_refresh_schema_from_table: Option<Arc<TableCatalog>>,
1120        allow_snapshot_backfill: bool,
1121    ) -> Result<StreamSink> {
1122        let backfill_type = if without_backfill {
1123            BackfillType::UpstreamOnly
1124        } else if allow_snapshot_backfill
1125            && self.should_use_snapshot_backfill()
1126            && {
1127                if auto_refresh_schema_from_table.is_some() {
1128                    self.plan.ctx().session_ctx().notice_to_user("Auto schema change only support for ArrangementBackfill. Switched to use ArrangementBackfill");
1129                    false
1130                } else {
1131                    true
1132                }
1133            }
1134        {
1135            assert!(
1136                target_table.is_none(),
1137                "should not allow snapshot backfill for sink-into-table"
1138            );
1139            // Snapshot backfill on sink-into-table is not allowed
1140            BackfillType::SnapshotBackfill
1141        } else if self.should_use_arrangement_backfill() {
1142            BackfillType::ArrangementBackfill
1143        } else {
1144            BackfillType::Backfill
1145        };
1146        if auto_refresh_schema_from_table.is_some()
1147            && backfill_type != BackfillType::ArrangementBackfill
1148        {
1149            return Err(ErrorCode::InvalidInputSyntax(format!(
1150                "auto schema change only support for ArrangementBackfill, but got: {:?}",
1151                backfill_type
1152            ))
1153            .into());
1154        }
1155        let stream_plan =
1156            self.gen_optimized_stream_plan_inner(emit_on_window_close, backfill_type)?;
1157        let target_columns_to_plan_mapping = target_table.as_ref().map(|t| {
1158            let columns = t.columns_without_rw_timestamp();
1159            stream_plan.target_columns_to_plan_mapping(&columns, user_specified_columns)
1160        });
1161
1162        StreamSink::create(
1163            stream_plan,
1164            sink_name,
1165            db_name,
1166            sink_from_table_name,
1167            target_table,
1168            target_columns_to_plan_mapping,
1169            definition,
1170            properties,
1171            format_desc,
1172            partition_info,
1173            auto_refresh_schema_from_table,
1174        )
1175    }
1176
1177    pub fn should_use_arrangement_backfill(&self) -> bool {
1178        let ctx = self.plan.ctx();
1179        let session_ctx = ctx.session_ctx();
1180        let arrangement_backfill_enabled = session_ctx
1181            .env()
1182            .streaming_config()
1183            .developer
1184            .enable_arrangement_backfill;
1185        arrangement_backfill_enabled && session_ctx.config().streaming_use_arrangement_backfill()
1186    }
1187
1188    pub fn should_use_snapshot_backfill(&self) -> bool {
1189        let ctx = self.plan.ctx();
1190        let session_ctx = ctx.session_ctx();
1191        let use_snapshot_backfill = session_ctx.config().streaming_use_snapshot_backfill();
1192        if use_snapshot_backfill {
1193            if let Some(warning_msg) = self.plan.forbid_snapshot_backfill() {
1194                self.plan.ctx().session_ctx().notice_to_user(warning_msg);
1195                false
1196            } else {
1197                true
1198            }
1199        } else {
1200            false
1201        }
1202    }
1203}
1204
1205impl<P: PlanPhase> PlanRoot<P> {
1206    /// used when the plan has a target relation such as DML and sink into table, return the mapping from table's columns to the plan's schema
1207    pub fn target_columns_to_plan_mapping(
1208        &self,
1209        tar_cols: &[ColumnCatalog],
1210        user_specified_columns: bool,
1211    ) -> Vec<Option<usize>> {
1212        #[allow(clippy::disallowed_methods)]
1213        let visible_cols: Vec<(usize, String)> = self
1214            .out_fields
1215            .ones()
1216            .zip_eq(self.out_names.iter().cloned())
1217            .collect_vec();
1218
1219        let visible_col_idxes = visible_cols.iter().map(|(i, _)| *i).collect_vec();
1220        let visible_col_idxes_by_name = visible_cols
1221            .iter()
1222            .map(|(i, name)| (name.as_ref(), *i))
1223            .collect::<BTreeMap<_, _>>();
1224
1225        tar_cols
1226            .iter()
1227            .enumerate()
1228            .filter(|(_, tar_col)| tar_col.can_dml())
1229            .map(|(tar_i, tar_col)| {
1230                if user_specified_columns {
1231                    visible_col_idxes_by_name.get(tar_col.name()).cloned()
1232                } else {
1233                    (tar_i < visible_col_idxes.len()).then(|| visible_cols[tar_i].0)
1234                }
1235            })
1236            .collect()
1237    }
1238}
1239
1240fn find_version_column_indices(
1241    column_catalog: &Vec<ColumnCatalog>,
1242    version_column_names: Vec<String>,
1243) -> Result<Vec<usize>> {
1244    let mut indices = Vec::new();
1245    for version_column_name in version_column_names {
1246        let mut found = false;
1247        for (index, column) in column_catalog.iter().enumerate() {
1248            if column.column_desc.name == version_column_name {
1249                if let &DataType::Jsonb
1250                | &DataType::List(_)
1251                | &DataType::Struct(_)
1252                | &DataType::Bytea
1253                | &DataType::Boolean = column.data_type()
1254                {
1255                    return Err(ErrorCode::InvalidInputSyntax(format!(
1256                        "Version column {} must be of a comparable data type",
1257                        version_column_name
1258                    ))
1259                    .into());
1260                }
1261                indices.push(index);
1262                found = true;
1263                break;
1264            }
1265        }
1266        if !found {
1267            return Err(ErrorCode::InvalidInputSyntax(format!(
1268                "Version column {} not found",
1269                version_column_name
1270            ))
1271            .into());
1272        }
1273    }
1274    Ok(indices)
1275}
1276
1277fn const_eval_exprs<C: ConventionMarker>(plan: PlanRef<C>) -> Result<PlanRef<C>> {
1278    let mut const_eval_rewriter = ConstEvalRewriter { error: None };
1279
1280    let plan = plan.rewrite_exprs_recursive(&mut const_eval_rewriter);
1281    if let Some(error) = const_eval_rewriter.error {
1282        return Err(error);
1283    }
1284    Ok(plan)
1285}
1286
1287fn inline_session_timezone_in_exprs<C: ConventionMarker>(
1288    ctx: OptimizerContextRef,
1289    plan: PlanRef<C>,
1290) -> Result<PlanRef<C>> {
1291    let mut v = TimestamptzExprFinder::default();
1292    plan.visit_exprs_recursive(&mut v);
1293    if v.has() {
1294        Ok(plan.rewrite_exprs_recursive(ctx.session_timezone().deref_mut()))
1295    } else {
1296        Ok(plan)
1297    }
1298}
1299
1300fn exist_and_no_exchange_before(
1301    plan: &BatchPlanRef,
1302    is_candidate: fn(&BatchPlanRef) -> bool,
1303) -> bool {
1304    if plan.node_type() == BatchPlanNodeType::BatchExchange {
1305        return false;
1306    }
1307    is_candidate(plan)
1308        || plan
1309            .inputs()
1310            .iter()
1311            .any(|input| exist_and_no_exchange_before(input, is_candidate))
1312}
1313
1314impl BatchPlanRef {
1315    fn is_user_table_scan(&self) -> bool {
1316        self.node_type() == BatchPlanNodeType::BatchSeqScan
1317            || self.node_type() == BatchPlanNodeType::BatchLogSeqScan
1318            || self.node_type() == BatchPlanNodeType::BatchVectorSearch
1319    }
1320
1321    fn is_source_scan(&self) -> bool {
1322        self.node_type() == BatchPlanNodeType::BatchSource
1323            || self.node_type() == BatchPlanNodeType::BatchKafkaScan
1324            || self.node_type() == BatchPlanNodeType::BatchIcebergScan
1325    }
1326
1327    fn is_insert(&self) -> bool {
1328        self.node_type() == BatchPlanNodeType::BatchInsert
1329    }
1330
1331    fn is_update(&self) -> bool {
1332        self.node_type() == BatchPlanNodeType::BatchUpdate
1333    }
1334
1335    fn is_delete(&self) -> bool {
1336        self.node_type() == BatchPlanNodeType::BatchDelete
1337    }
1338}
1339
1340/// As we always run the root stage locally, for some plan in root stage which need to execute in
1341/// compute node we insert an additional exhchange before it to avoid to include it in the root
1342/// stage.
1343///
1344/// Returns `true` if we must insert an additional exchange to ensure this.
1345fn require_additional_exchange_on_root_in_distributed_mode(plan: BatchPlanRef) -> bool {
1346    assert_eq!(plan.distribution(), &Distribution::Single);
1347    exist_and_no_exchange_before(&plan, |plan| {
1348        plan.is_user_table_scan()
1349            || plan.is_source_scan()
1350            || plan.is_insert()
1351            || plan.is_update()
1352            || plan.is_delete()
1353    })
1354}
1355
1356/// The purpose is same as `require_additional_exchange_on_root_in_distributed_mode`. We separate
1357/// them for the different requirement of plan node in different execute mode.
1358fn require_additional_exchange_on_root_in_local_mode(plan: BatchPlanRef) -> bool {
1359    assert_eq!(plan.distribution(), &Distribution::Single);
1360    exist_and_no_exchange_before(&plan, |plan| {
1361        plan.is_user_table_scan() || plan.is_source_scan() || plan.is_insert()
1362    })
1363}
1364
1365#[cfg(test)]
1366mod tests {
1367    use super::*;
1368    use crate::optimizer::plan_node::LogicalValues;
1369
1370    #[tokio::test]
1371    async fn test_as_subplan() {
1372        let ctx = OptimizerContext::mock().await;
1373        let values = LogicalValues::new(
1374            vec![],
1375            Schema::new(vec![
1376                Field::with_name(DataType::Int32, "v1"),
1377                Field::with_name(DataType::Varchar, "v2"),
1378            ]),
1379            ctx,
1380        )
1381        .into();
1382        let out_fields = FixedBitSet::with_capacity_and_blocks(2, [1]);
1383        let out_names = vec!["v1".into()];
1384        let root = PlanRoot::new_with_logical_plan(
1385            values,
1386            RequiredDist::Any,
1387            Order::any(),
1388            out_fields,
1389            out_names,
1390        );
1391        let subplan = root.into_unordered_subplan();
1392        assert_eq!(
1393            subplan.schema(),
1394            &Schema::new(vec![Field::with_name(DataType::Int32, "v1")])
1395        );
1396    }
1397}