risingwave_frontend/optimizer/
mod.rs

1// Copyright 2022 RisingWave Labs
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15use std::num::NonZeroU32;
16use std::ops::DerefMut;
17use std::sync::Arc;
18
19use risingwave_pb::catalog::PbVectorIndexInfo;
20
21pub mod plan_node;
22
23use plan_node::StreamFilter;
24pub use plan_node::{Explain, LogicalPlanRef, PlanRef};
25
26pub mod property;
27
28mod delta_join_solver;
29mod heuristic_optimizer;
30mod plan_rewriter;
31
32mod plan_visitor;
33
34#[cfg(feature = "datafusion")]
35pub use plan_visitor::DataFusionExecuteCheckerExt;
36pub use plan_visitor::{
37    ExecutionModeDecider, PlanVisitor, RelationCollectorVisitor, SysTableVisitor,
38};
39use risingwave_pb::plan_common::source_refresh_mode::RefreshMode;
40
41pub mod backfill_order_strategy;
42mod logical_optimization;
43mod optimizer_context;
44pub mod plan_expr_rewriter;
45mod plan_expr_visitor;
46mod rule;
47
48use std::collections::{BTreeMap, HashMap};
49use std::marker::PhantomData;
50
51use educe::Educe;
52use fixedbitset::FixedBitSet;
53use itertools::Itertools as _;
54pub use logical_optimization::*;
55pub use optimizer_context::*;
56use plan_expr_rewriter::ConstEvalRewriter;
57use property::Order;
58use risingwave_common::bail;
59use risingwave_common::catalog::{ColumnCatalog, ColumnDesc, ConflictBehavior, Field, Schema};
60use risingwave_common::types::DataType;
61use risingwave_common::util::column_index_mapping::ColIndexMapping;
62use risingwave_common::util::iter_util::ZipEqDebug;
63use risingwave_connector::WithPropertiesExt;
64use risingwave_connector::sink::catalog::SinkFormatDesc;
65use risingwave_pb::stream_plan::StreamScanType;
66
67use self::heuristic_optimizer::ApplyOrder;
68use self::plan_node::generic::{self, PhysicalPlanRef};
69use self::plan_node::{
70    BatchProject, LogicalProject, LogicalSource, PartitionComputeInfo, StreamDml,
71    StreamMaterialize, StreamProject, StreamRowIdGen, StreamSink, StreamWatermarkFilter,
72    ToStreamContext, stream_enforce_eowc_requirement,
73};
74#[cfg(debug_assertions)]
75use self::plan_visitor::InputRefValidator;
76use self::plan_visitor::{CardinalityVisitor, StreamKeyChecker, has_batch_exchange};
77use self::property::{Cardinality, RequiredDist};
78use self::rule::*;
79use crate::TableCatalog;
80use crate::catalog::table_catalog::TableType;
81use crate::catalog::{DatabaseId, SchemaId};
82use crate::error::{ErrorCode, Result};
83use crate::expr::TimestamptzExprFinder;
84use crate::handler::create_table::{CreateTableInfo, CreateTableProps};
85use crate::optimizer::plan_node::generic::{GenericPlanRef, SourceNodeKind, Union};
86use crate::optimizer::plan_node::{
87    BackfillType, Batch, BatchExchange, BatchPlanNodeType, BatchPlanRef, ConventionMarker,
88    PlanTreeNode, Stream, StreamExchange, StreamPlanRef, StreamUnion, StreamUpstreamSinkUnion,
89    StreamVectorIndexWrite, ToStream, VisitExprsRecursive,
90};
91use crate::optimizer::plan_visitor::{
92    LocalityProviderCounter, RwTimestampValidator, TemporalJoinValidator,
93};
94use crate::optimizer::property::Distribution;
95use crate::utils::{ColIndexMappingRewriteExt, WithOptionsSecResolved};
96
97/// `PlanRoot` is used to describe a plan. planner will construct a `PlanRoot` with `LogicalNode`.
98/// and required distribution and order. And `PlanRoot` can generate corresponding streaming or
99/// batch plan with optimization. the required Order and Distribution columns might be more than the
100/// output columns. for example:
101/// ```sql
102///    select v1 from t order by id;
103/// ```
104/// the plan will return two columns (id, v1), and the required order column is id. the id
105/// column is required in optimization, but the final generated plan will remove the unnecessary
106/// column in the result.
107#[derive(Educe)]
108#[educe(Debug, Clone)]
109pub struct PlanRoot<P: PlanPhase> {
110    // The current plan node.
111    pub plan: PlanRef<P::Convention>,
112    // The phase of the plan.
113    #[educe(Debug(ignore), Clone(method(PhantomData::clone)))]
114    _phase: PhantomData<P>,
115    required_dist: RequiredDist,
116    required_order: Order,
117    out_fields: FixedBitSet,
118    out_names: Vec<String>,
119}
120
121/// `PlanPhase` is used to track the phase of the `PlanRoot`.
122/// Usually, it begins from `Logical` and ends with `Batch` or `Stream`, unless we want to construct a `PlanRoot` from an intermediate phase.
123/// Typical phase transformation are:
124/// - `Logical` -> `OptimizedLogicalForBatch` -> `Batch`
125/// - `Logical` -> `OptimizedLogicalForStream` -> `Stream`
126pub trait PlanPhase {
127    type Convention: ConventionMarker;
128}
129
130macro_rules! for_all_phase {
131    () => {
132        for_all_phase! {
133            { Logical, $crate::optimizer::plan_node::Logical },
134            { BatchOptimizedLogical, $crate::optimizer::plan_node::Logical },
135            { StreamOptimizedLogical, $crate::optimizer::plan_node::Stream },
136            { Batch, $crate::optimizer::plan_node::Batch },
137            { Stream, $crate::optimizer::plan_node::Stream }
138        }
139    };
140    ($({$phase:ident, $convention:ty}),+ $(,)?) => {
141        $(
142            paste::paste! {
143                pub struct [< PlanPhase$phase >];
144                impl PlanPhase for [< PlanPhase$phase >] {
145                    type Convention = $convention;
146                }
147                pub type [< $phase PlanRoot >] = PlanRoot<[< PlanPhase$phase >]>;
148            }
149        )+
150    }
151}
152
153for_all_phase!();
154
155impl LogicalPlanRoot {
156    pub fn new_with_logical_plan(
157        plan: LogicalPlanRef,
158        required_dist: RequiredDist,
159        required_order: Order,
160        out_fields: FixedBitSet,
161        out_names: Vec<String>,
162    ) -> Self {
163        Self::new_inner(plan, required_dist, required_order, out_fields, out_names)
164    }
165}
166
167impl BatchPlanRoot {
168    pub fn new_with_batch_plan(
169        plan: BatchPlanRef,
170        required_dist: RequiredDist,
171        required_order: Order,
172        out_fields: FixedBitSet,
173        out_names: Vec<String>,
174    ) -> Self {
175        Self::new_inner(plan, required_dist, required_order, out_fields, out_names)
176    }
177}
178
179impl<P: PlanPhase> PlanRoot<P> {
180    fn new_inner(
181        plan: PlanRef<P::Convention>,
182        required_dist: RequiredDist,
183        required_order: Order,
184        out_fields: FixedBitSet,
185        out_names: Vec<String>,
186    ) -> Self {
187        let input_schema = plan.schema();
188        assert_eq!(input_schema.fields().len(), out_fields.len());
189        assert_eq!(out_fields.count_ones(..), out_names.len());
190
191        Self {
192            plan,
193            _phase: PhantomData,
194            required_dist,
195            required_order,
196            out_fields,
197            out_names,
198        }
199    }
200
201    fn into_phase<P2: PlanPhase>(self, plan: PlanRef<P2::Convention>) -> PlanRoot<P2> {
202        PlanRoot {
203            plan,
204            _phase: PhantomData,
205            required_dist: self.required_dist,
206            required_order: self.required_order,
207            out_fields: self.out_fields,
208            out_names: self.out_names,
209        }
210    }
211
212    /// Set customized names of the output fields, used for `CREATE [MATERIALIZED VIEW | SINK] r(a,
213    /// b, ..)`.
214    ///
215    /// If the number of names does not match the number of output fields, an error is returned.
216    pub fn set_out_names(&mut self, out_names: Vec<String>) -> Result<()> {
217        if out_names.len() != self.out_fields.count_ones(..) {
218            Err(ErrorCode::InvalidInputSyntax(
219                "number of column names does not match number of columns".to_owned(),
220            ))?
221        }
222        self.out_names = out_names;
223        Ok(())
224    }
225
226    /// Get the plan root's schema, only including the fields to be output.
227    pub fn schema(&self) -> Schema {
228        // The schema can be derived from the `out_fields` and `out_names`, so we don't maintain it
229        // as a field and always construct one on demand here to keep it in sync.
230        Schema {
231            fields: self
232                .out_fields
233                .ones()
234                .map(|i| self.plan.schema().fields()[i].clone())
235                .zip_eq_debug(&self.out_names)
236                .map(|(field, name)| Field {
237                    name: name.clone(),
238                    ..field
239                })
240                .collect(),
241        }
242    }
243}
244
245impl LogicalPlanRoot {
246    /// Transform the [`PlanRoot`] back to a [`PlanRef`] suitable to be used as a subplan, for
247    /// example as insert source or subquery. This ignores Order but retains post-Order pruning
248    /// (`out_fields`).
249    pub fn into_unordered_subplan(self) -> LogicalPlanRef {
250        if self.out_fields.count_ones(..) == self.out_fields.len() {
251            return self.plan;
252        }
253        LogicalProject::with_out_fields(self.plan, &self.out_fields).into()
254    }
255
256    /// Transform the [`PlanRoot`] wrapped in an array-construction subquery to a [`PlanRef`]
257    /// supported by `ARRAY_AGG`. Similar to the unordered version, this abstracts away internal
258    /// `self.plan` which is further modified by `self.required_order` then `self.out_fields`.
259    pub fn into_array_agg(self) -> Result<LogicalPlanRef> {
260        use generic::Agg;
261        use plan_node::PlanAggCall;
262        use risingwave_common::types::ListValue;
263        use risingwave_expr::aggregate::PbAggKind;
264
265        use crate::expr::{ExprImpl, ExprType, FunctionCall, InputRef};
266        use crate::utils::{Condition, IndexSet};
267
268        let Ok(select_idx) = self.out_fields.ones().exactly_one() else {
269            bail!("subquery must return only one column");
270        };
271        let input_column_type = self.plan.schema().fields()[select_idx].data_type();
272        let return_type = DataType::list(input_column_type.clone());
273        let agg = Agg::new(
274            vec![PlanAggCall {
275                agg_type: PbAggKind::ArrayAgg.into(),
276                return_type: return_type.clone(),
277                inputs: vec![InputRef::new(select_idx, input_column_type.clone())],
278                distinct: false,
279                order_by: self.required_order.column_orders,
280                filter: Condition::true_cond(),
281                direct_args: vec![],
282            }],
283            IndexSet::empty(),
284            self.plan,
285        );
286        Ok(LogicalProject::create(
287            agg.into(),
288            vec![
289                FunctionCall::new(
290                    ExprType::Coalesce,
291                    vec![
292                        InputRef::new(0, return_type).into(),
293                        ExprImpl::literal_list(
294                            ListValue::empty(&input_column_type),
295                            input_column_type,
296                        ),
297                    ],
298                )
299                .unwrap()
300                .into(),
301            ],
302        ))
303    }
304
305    /// Apply logical optimization to the plan for stream.
306    pub fn gen_optimized_logical_plan_for_stream(mut self) -> Result<LogicalPlanRoot> {
307        self.plan = LogicalOptimizer::gen_optimized_logical_plan_for_stream(self.plan.clone())?;
308        Ok(self)
309    }
310
311    /// Apply logical optimization to the plan for batch.
312    pub fn gen_optimized_logical_plan_for_batch(self) -> Result<BatchOptimizedLogicalPlanRoot> {
313        let plan = LogicalOptimizer::gen_optimized_logical_plan_for_batch(self.plan.clone())?;
314        Ok(self.into_phase(plan))
315    }
316
317    pub fn gen_batch_plan(self) -> Result<BatchPlanRoot> {
318        self.gen_optimized_logical_plan_for_batch()?
319            .gen_batch_plan()
320    }
321}
322
323impl BatchOptimizedLogicalPlanRoot {
324    /// Optimize and generate a singleton batch physical plan without exchange nodes.
325    pub fn gen_batch_plan(self) -> Result<BatchPlanRoot> {
326        if TemporalJoinValidator::exist_dangling_temporal_scan(self.plan.clone()) {
327            return Err(ErrorCode::NotSupported(
328                "do not support temporal join for batch queries".to_owned(),
329                "please use temporal join in streaming queries".to_owned(),
330            )
331            .into());
332        }
333
334        let ctx = self.plan.ctx();
335        // Inline session timezone mainly for rewriting now()
336        let mut plan = inline_session_timezone_in_exprs(ctx.clone(), self.plan.clone())?;
337
338        // Const eval of exprs at the last minute, but before `to_batch` to make functional index selection happy.
339        plan = const_eval_exprs(plan)?;
340
341        if ctx.is_explain_trace() {
342            ctx.trace("Const eval exprs:");
343            ctx.trace(plan.explain_to_string());
344        }
345
346        // Convert to physical plan node
347        let mut plan = plan.to_batch_with_order_required(&self.required_order)?;
348        if ctx.is_explain_trace() {
349            ctx.trace("To Batch Plan:");
350            ctx.trace(plan.explain_to_string());
351        }
352
353        plan = plan.optimize_by_rules(&OptimizationStage::<Batch>::new(
354            "Merge BatchProject",
355            vec![BatchProjectMergeRule::create()],
356            ApplyOrder::BottomUp,
357        ))?;
358
359        // Inline session timezone
360        plan = inline_session_timezone_in_exprs(ctx.clone(), plan)?;
361
362        if ctx.is_explain_trace() {
363            ctx.trace("Inline Session Timezone:");
364            ctx.trace(plan.explain_to_string());
365        }
366
367        #[cfg(debug_assertions)]
368        InputRefValidator.validate(plan.clone());
369        assert_eq!(
370            *plan.distribution(),
371            Distribution::Single,
372            "{}",
373            plan.explain_to_string()
374        );
375        assert!(
376            !has_batch_exchange(plan.clone()),
377            "{}",
378            plan.explain_to_string()
379        );
380
381        let ctx = plan.ctx();
382        if ctx.is_explain_trace() {
383            ctx.trace("To Batch Physical Plan:");
384            ctx.trace(plan.explain_to_string());
385        }
386
387        Ok(self.into_phase(plan))
388    }
389
390    #[cfg(feature = "datafusion")]
391    pub fn gen_datafusion_logical_plan(
392        &self,
393    ) -> Result<Arc<datafusion::logical_expr::LogicalPlan>> {
394        use datafusion::logical_expr::{Expr as DFExpr, LogicalPlan, Projection, Sort};
395        use datafusion_common::Column;
396        use plan_visitor::LogicalPlanToDataFusionExt;
397
398        use crate::datafusion::{InputColumns, convert_column_order};
399
400        tracing::debug!(
401            "Converting RisingWave logical plan to DataFusion plan:\nRisingWave Plan: {:?}",
402            self.plan
403        );
404
405        let ctx = self.plan.ctx();
406        // Inline session timezone mainly for rewriting now()
407        let mut plan = inline_session_timezone_in_exprs(ctx, self.plan.clone())?;
408        plan = const_eval_exprs(plan)?;
409
410        let mut df_plan = plan.to_datafusion_logical_plan()?;
411
412        if !self.required_order.is_any() {
413            let input_columns = InputColumns::new(df_plan.schema().as_ref(), plan.schema());
414            let expr = self
415                .required_order
416                .column_orders
417                .iter()
418                .map(|column_order| convert_column_order(column_order, &input_columns))
419                .collect_vec();
420            df_plan = Arc::new(LogicalPlan::Sort(Sort {
421                expr,
422                input: df_plan,
423                fetch: None,
424            }));
425        }
426
427        if self.out_names.len() < df_plan.schema().fields().len() {
428            let df_schema = df_plan.schema().as_ref();
429            let projection_exprs = self
430                .out_fields
431                .ones()
432                .zip_eq_debug(self.out_names.iter())
433                .map(|(i, name)| {
434                    DFExpr::Column(Column::from(df_schema.qualified_field(i))).alias(name)
435                })
436                .collect_vec();
437            df_plan = Arc::new(LogicalPlan::Projection(Projection::try_new(
438                projection_exprs,
439                df_plan,
440            )?));
441        }
442
443        tracing::debug!("Converted DataFusion plan:\nDataFusion Plan: {:?}", df_plan);
444
445        Ok(df_plan)
446    }
447}
448
449impl BatchPlanRoot {
450    /// Optimize and generate a batch query plan for distributed execution.
451    pub fn gen_batch_distributed_plan(mut self) -> Result<BatchPlanRef> {
452        self.required_dist = RequiredDist::single();
453        let mut plan = self.plan;
454
455        // Convert to distributed plan
456        plan = plan.to_distributed_with_required(&self.required_order, &self.required_dist)?;
457
458        let ctx = plan.ctx();
459        if ctx.is_explain_trace() {
460            ctx.trace("To Batch Distributed Plan:");
461            ctx.trace(plan.explain_to_string());
462        }
463        if require_additional_exchange_on_root_in_distributed_mode(plan.clone()) {
464            plan =
465                BatchExchange::new(plan, self.required_order.clone(), Distribution::Single).into();
466        }
467
468        // Add Project if the any position of `self.out_fields` is set to zero.
469        if self.out_fields.count_ones(..) != self.out_fields.len() {
470            plan =
471                BatchProject::new(generic::Project::with_out_fields(plan, &self.out_fields)).into();
472        }
473
474        // Both two phase limit and topn could generate limit on top of the scan, so we push limit here.
475        let plan = plan.optimize_by_rules(&OptimizationStage::new(
476            "Push Limit To Scan",
477            vec![BatchPushLimitToScanRule::create()],
478            ApplyOrder::BottomUp,
479        ))?;
480
481        Ok(plan)
482    }
483
484    /// Optimize and generate a batch query plan for local execution.
485    pub fn gen_batch_local_plan(self) -> Result<BatchPlanRef> {
486        let mut plan = self.plan;
487
488        // Convert to local plan node
489        plan = plan.to_local_with_order_required(&self.required_order)?;
490
491        // We remark that since the `to_local_with_order_required` does not enforce single
492        // distribution, we enforce at the root if needed.
493        let insert_exchange = match plan.distribution() {
494            Distribution::Single => require_additional_exchange_on_root_in_local_mode(plan.clone()),
495            _ => true,
496        };
497        if insert_exchange {
498            plan =
499                BatchExchange::new(plan, self.required_order.clone(), Distribution::Single).into()
500        }
501
502        // Add Project if the any position of `self.out_fields` is set to zero.
503        if self.out_fields.count_ones(..) != self.out_fields.len() {
504            plan =
505                BatchProject::new(generic::Project::with_out_fields(plan, &self.out_fields)).into();
506        }
507
508        let ctx = plan.ctx();
509        if ctx.is_explain_trace() {
510            ctx.trace("To Batch Local Plan:");
511            ctx.trace(plan.explain_to_string());
512        }
513
514        // Both two phase limit and topn could generate limit on top of the scan, so we push limit here.
515        let plan = plan.optimize_by_rules(&OptimizationStage::new(
516            "Push Limit To Scan",
517            vec![BatchPushLimitToScanRule::create()],
518            ApplyOrder::BottomUp,
519        ))?;
520
521        Ok(plan)
522    }
523}
524
525impl LogicalPlanRoot {
526    /// Generate optimized stream plan
527    fn gen_optimized_stream_plan(
528        self,
529        emit_on_window_close: bool,
530        allow_snapshot_backfill: bool,
531    ) -> Result<StreamOptimizedLogicalPlanRoot> {
532        let backfill_type = if allow_snapshot_backfill && self.should_use_snapshot_backfill() {
533            BackfillType::SnapshotBackfill
534        } else if self.should_use_arrangement_backfill() {
535            BackfillType::ArrangementBackfill
536        } else {
537            BackfillType::Backfill
538        };
539        self.gen_optimized_stream_plan_inner(emit_on_window_close, backfill_type)
540    }
541
542    fn gen_optimized_stream_plan_inner(
543        self,
544        emit_on_window_close: bool,
545        backfill_type: BackfillType,
546    ) -> Result<StreamOptimizedLogicalPlanRoot> {
547        let ctx = self.plan.ctx();
548        let _explain_trace = ctx.is_explain_trace();
549
550        let optimized_plan = self.gen_stream_plan(emit_on_window_close, backfill_type)?;
551
552        let mut plan = optimized_plan
553            .plan
554            .clone()
555            .optimize_by_rules(&OptimizationStage::new(
556                "Merge StreamProject",
557                vec![StreamProjectMergeRule::create()],
558                ApplyOrder::BottomUp,
559            ))?;
560
561        if ctx
562            .session_ctx()
563            .config()
564            .streaming_separate_consecutive_join()
565        {
566            plan = plan.optimize_by_rules(&OptimizationStage::new(
567                "Separate consecutive StreamHashJoin by no-shuffle StreamExchange",
568                vec![SeparateConsecutiveJoinRule::create()],
569                ApplyOrder::BottomUp,
570            ))?;
571        }
572
573        // Add Logstore for Unaligned join
574        // Apply this BEFORE delta join rule, because delta join removes
575        // the join
576        if ctx.session_ctx().config().streaming_enable_unaligned_join() {
577            plan = plan.optimize_by_rules(&OptimizationStage::new(
578                "Add Logstore for Unaligned join",
579                vec![AddLogstoreRule::create()],
580                ApplyOrder::BottomUp,
581            ))?;
582        }
583
584        if ctx.session_ctx().config().streaming_enable_delta_join()
585            && ctx.session_ctx().config().enable_index_selection()
586        {
587            // TODO: make it a logical optimization.
588            // Rewrite joins with index to delta join
589            plan = plan.optimize_by_rules(&OptimizationStage::new(
590                "To IndexDeltaJoin",
591                vec![IndexDeltaJoinRule::create()],
592                ApplyOrder::BottomUp,
593            ))?;
594        }
595        // Inline session timezone
596        plan = inline_session_timezone_in_exprs(ctx.clone(), plan)?;
597
598        if ctx.is_explain_trace() {
599            ctx.trace("Inline session timezone:");
600            ctx.trace(plan.explain_to_string());
601        }
602
603        // Const eval of exprs at the last minute
604        plan = const_eval_exprs(plan)?;
605
606        if ctx.is_explain_trace() {
607            ctx.trace("Const eval exprs:");
608            ctx.trace(plan.explain_to_string());
609        }
610
611        #[cfg(debug_assertions)]
612        InputRefValidator.validate(plan.clone());
613
614        if TemporalJoinValidator::exist_dangling_temporal_scan(plan.clone()) {
615            return Err(ErrorCode::NotSupported(
616                "exist dangling temporal scan".to_owned(),
617                "please check your temporal join syntax e.g. consider removing the right outer join if it is being used.".to_owned(),
618            ).into());
619        }
620
621        if RwTimestampValidator::select_rw_timestamp_in_stream_query(plan.clone()) {
622            return Err(ErrorCode::NotSupported(
623                "selecting `_rw_timestamp` in a streaming query is not allowed".to_owned(),
624                "please run the sql in batch mode or remove the column `_rw_timestamp` from the streaming query".to_owned(),
625            ).into());
626        }
627
628        if ctx.session_ctx().config().enable_locality_backfill()
629            && LocalityProviderCounter::count(plan.clone()) > 5
630        {
631            risingwave_common::license::Feature::LocalityBackfill.check_available()?
632        }
633
634        Ok(optimized_plan.into_phase(plan))
635    }
636
637    /// Generate create index or create materialize view plan.
638    fn gen_stream_plan(
639        self,
640        emit_on_window_close: bool,
641        backfill_type: BackfillType,
642    ) -> Result<StreamOptimizedLogicalPlanRoot> {
643        let ctx = self.plan.ctx();
644        let explain_trace = ctx.is_explain_trace();
645
646        let plan = {
647            {
648                if !ctx
649                    .session_ctx()
650                    .config()
651                    .streaming_allow_jsonb_in_stream_key()
652                    && let Some(err) = StreamKeyChecker.visit(self.plan.clone())
653                {
654                    return Err(ErrorCode::NotSupported(
655                        err,
656                        "Using JSONB columns as part of the join or aggregation keys can severely impair performance. \
657                        If you intend to proceed, force to enable it with: `set rw_streaming_allow_jsonb_in_stream_key to true`".to_owned(),
658                    ).into());
659                }
660                let mut optimized_plan = self.gen_optimized_logical_plan_for_stream()?;
661                let (plan, out_col_change) = {
662                    let (plan, out_col_change) = optimized_plan
663                        .plan
664                        .logical_rewrite_for_stream(&mut Default::default())?;
665                    if out_col_change.is_injective() {
666                        (plan, out_col_change)
667                    } else {
668                        let mut output_indices = (0..plan.schema().len()).collect_vec();
669                        #[allow(unused_assignments)]
670                        let (mut map, mut target_size) = out_col_change.into_parts();
671
672                        // TODO(st1page): https://github.com/risingwavelabs/risingwave/issues/7234
673                        // assert_eq!(target_size, output_indices.len());
674                        target_size = plan.schema().len();
675                        let mut tar_exists = vec![false; target_size];
676                        for i in map.iter_mut().flatten() {
677                            if tar_exists[*i] {
678                                output_indices.push(*i);
679                                *i = target_size;
680                                target_size += 1;
681                            } else {
682                                tar_exists[*i] = true;
683                            }
684                        }
685                        let plan =
686                            LogicalProject::with_out_col_idx(plan, output_indices.into_iter());
687                        let out_col_change = ColIndexMapping::new(map, target_size);
688                        (plan.into(), out_col_change)
689                    }
690                };
691
692                if explain_trace {
693                    ctx.trace("Logical Rewrite For Stream:");
694                    ctx.trace(plan.explain_to_string());
695                }
696
697                optimized_plan.required_dist =
698                    out_col_change.rewrite_required_distribution(&optimized_plan.required_dist);
699                optimized_plan.required_order = out_col_change
700                    .rewrite_required_order(&optimized_plan.required_order)
701                    .unwrap();
702                optimized_plan.out_fields =
703                    out_col_change.rewrite_bitset(&optimized_plan.out_fields);
704                let mut plan = plan.to_stream_with_dist_required(
705                    &optimized_plan.required_dist,
706                    &mut ToStreamContext::new_with_backfill_type(
707                        emit_on_window_close,
708                        backfill_type,
709                    ),
710                )?;
711                plan = stream_enforce_eowc_requirement(ctx.clone(), plan, emit_on_window_close)?;
712                optimized_plan.into_phase(plan)
713            }
714        };
715
716        if explain_trace {
717            ctx.trace("To Stream Plan:");
718            // TODO: can be `plan.plan.explain_to_string()`, but should explicitly specify the type due to some limitation of rust compiler
719            ctx.trace(<PlanRef<Stream> as Explain>::explain_to_string(&plan.plan));
720        }
721        Ok(plan)
722    }
723
724    /// Visit the plan root and compute the cardinality.
725    ///
726    /// Panics if not called on a logical plan.
727    fn compute_cardinality(&self) -> Cardinality {
728        CardinalityVisitor.visit(self.plan.clone())
729    }
730
731    /// Optimize and generate a create table plan.
732    pub fn gen_table_plan(
733        self,
734        context: OptimizerContextRef,
735        table_name: String,
736        database_id: DatabaseId,
737        schema_id: SchemaId,
738        CreateTableInfo {
739            columns,
740            pk_column_ids,
741            row_id_index,
742            watermark_descs,
743            source_catalog,
744            version,
745        }: CreateTableInfo,
746        CreateTableProps {
747            definition,
748            append_only,
749            on_conflict,
750            with_version_columns,
751            webhook_info,
752            engine,
753        }: CreateTableProps,
754    ) -> Result<StreamMaterialize> {
755        // Snapshot backfill is not allowed for create table
756        let stream_plan = self.gen_optimized_stream_plan(false, false)?;
757
758        assert!(!pk_column_ids.is_empty() || row_id_index.is_some());
759
760        let pk_column_indices = {
761            let mut id_to_idx = HashMap::new();
762
763            columns.iter().enumerate().for_each(|(idx, c)| {
764                id_to_idx.insert(c.column_id(), idx);
765            });
766            pk_column_ids
767                .iter()
768                .map(|c| id_to_idx.get(c).copied().unwrap()) // pk column id must exist in table columns.
769                .collect_vec()
770        };
771
772        fn inject_project_for_generated_column_if_needed(
773            columns: &[ColumnCatalog],
774            node: StreamPlanRef,
775        ) -> Result<StreamPlanRef> {
776            let exprs = LogicalSource::derive_output_exprs_from_generated_columns(columns)?;
777            if let Some(exprs) = exprs {
778                let logical_project = generic::Project::new(exprs, node);
779                return Ok(StreamProject::new(logical_project).into());
780            }
781            Ok(node)
782        }
783
784        #[derive(PartialEq, Debug, Copy, Clone)]
785        enum PrimaryKeyKind {
786            UserDefinedPrimaryKey,
787            NonAppendOnlyRowIdPk,
788            AppendOnlyRowIdPk,
789        }
790
791        fn inject_dml_node(
792            columns: &[ColumnCatalog],
793            append_only: bool,
794            stream_plan: StreamPlanRef,
795            pk_column_indices: &[usize],
796            kind: PrimaryKeyKind,
797            column_descs: Vec<ColumnDesc>,
798        ) -> Result<StreamPlanRef> {
799            let mut dml_node = StreamDml::new(stream_plan, append_only, column_descs).into();
800
801            // Add generated columns.
802            dml_node = inject_project_for_generated_column_if_needed(columns, dml_node)?;
803
804            dml_node = match kind {
805                PrimaryKeyKind::UserDefinedPrimaryKey | PrimaryKeyKind::NonAppendOnlyRowIdPk => {
806                    RequiredDist::hash_shard(pk_column_indices)
807                        .streaming_enforce_if_not_satisfies(dml_node)?
808                }
809                PrimaryKeyKind::AppendOnlyRowIdPk => {
810                    StreamExchange::new_no_shuffle(dml_node).into()
811                }
812            };
813
814            Ok(dml_node)
815        }
816
817        let kind = if let Some(row_id_index) = row_id_index {
818            assert_eq!(
819                pk_column_indices.iter().exactly_one().copied().unwrap(),
820                row_id_index
821            );
822            if append_only {
823                PrimaryKeyKind::AppendOnlyRowIdPk
824            } else {
825                PrimaryKeyKind::NonAppendOnlyRowIdPk
826            }
827        } else {
828            PrimaryKeyKind::UserDefinedPrimaryKey
829        };
830
831        let column_descs: Vec<ColumnDesc> = columns
832            .iter()
833            .filter(|&c| c.can_dml())
834            .map(|c| c.column_desc.clone())
835            .collect();
836
837        let mut not_null_idxs = vec![];
838        for (idx, column) in column_descs.iter().enumerate() {
839            if !column.nullable {
840                not_null_idxs.push(idx);
841            }
842        }
843
844        let version_column_indices = if !with_version_columns.is_empty() {
845            find_version_column_indices(&columns, with_version_columns)?
846        } else {
847            vec![]
848        };
849
850        let with_external_source = source_catalog.is_some();
851        let (dml_source_node, external_source_node) = if with_external_source {
852            let dummy_source_node = LogicalSource::new(
853                None,
854                columns.clone(),
855                row_id_index,
856                SourceNodeKind::CreateTable,
857                context.clone(),
858                None,
859            )
860            .and_then(|s| s.to_stream(&mut ToStreamContext::new(false)))?;
861            let mut external_source_node = stream_plan.plan;
862            external_source_node =
863                inject_project_for_generated_column_if_needed(&columns, external_source_node)?;
864            external_source_node = match kind {
865                PrimaryKeyKind::UserDefinedPrimaryKey => {
866                    RequiredDist::hash_shard(&pk_column_indices)
867                        .streaming_enforce_if_not_satisfies(external_source_node)?
868                }
869
870                PrimaryKeyKind::NonAppendOnlyRowIdPk | PrimaryKeyKind::AppendOnlyRowIdPk => {
871                    StreamExchange::new_no_shuffle(external_source_node).into()
872                }
873            };
874            (dummy_source_node, Some(external_source_node))
875        } else {
876            (stream_plan.plan, None)
877        };
878
879        let dml_node = inject_dml_node(
880            &columns,
881            append_only,
882            dml_source_node,
883            &pk_column_indices,
884            kind,
885            column_descs,
886        )?;
887
888        let dists = external_source_node
889            .iter()
890            .map(|input| input.distribution())
891            .chain([dml_node.distribution()])
892            .unique()
893            .collect_vec();
894
895        let dist = match &dists[..] {
896            &[Distribution::SomeShard, Distribution::HashShard(_)]
897            | &[Distribution::HashShard(_), Distribution::SomeShard] => Distribution::SomeShard,
898            &[dist @ Distribution::SomeShard] | &[dist @ Distribution::HashShard(_)] => {
899                dist.clone()
900            }
901            _ => {
902                unreachable!()
903            }
904        };
905
906        let generated_column_exprs =
907            LogicalSource::derive_output_exprs_from_generated_columns(&columns)?;
908        let upstream_sink_union = StreamUpstreamSinkUnion::new(
909            context.clone(),
910            dml_node.schema(),
911            dml_node.stream_key(),
912            dist.clone(), // should always be the same as dist of `Union`
913            append_only,
914            row_id_index.is_none(),
915            generated_column_exprs,
916        );
917
918        let union_inputs = external_source_node
919            .into_iter()
920            .chain([dml_node, upstream_sink_union.into()])
921            .collect_vec();
922
923        let mut stream_plan = StreamUnion::new_with_dist(
924            Union {
925                all: true,
926                inputs: union_inputs,
927                source_col: None,
928            },
929            dist,
930        )
931        .into();
932
933        let ttl_watermark_indices = watermark_descs
934            .iter()
935            .filter(|d| d.with_ttl)
936            .map(|d| d.watermark_idx as usize)
937            .collect_vec();
938
939        // Add WatermarkFilter node.
940        if !watermark_descs.is_empty() {
941            stream_plan = StreamWatermarkFilter::new(stream_plan, watermark_descs).into();
942        }
943
944        // Add RowIDGen node if needed.
945        if let Some(row_id_index) = row_id_index {
946            match kind {
947                PrimaryKeyKind::UserDefinedPrimaryKey => {
948                    unreachable!()
949                }
950                PrimaryKeyKind::NonAppendOnlyRowIdPk | PrimaryKeyKind::AppendOnlyRowIdPk => {
951                    stream_plan = StreamRowIdGen::new_with_dist(
952                        stream_plan,
953                        row_id_index,
954                        Distribution::HashShard(vec![row_id_index]),
955                    )
956                    .into();
957                }
958            }
959        }
960
961        let conflict_behavior = on_conflict.to_behavior(append_only, row_id_index.is_some())?;
962
963        if let ConflictBehavior::IgnoreConflict = conflict_behavior
964            && !version_column_indices.is_empty()
965        {
966            Err(ErrorCode::InvalidParameterValue(
967                "The with version column syntax cannot be used with the ignore behavior of on conflict".to_owned(),
968            ))?
969        }
970
971        let retention_seconds = context.with_options().retention_seconds();
972
973        let table_required_dist = {
974            let mut bitset = FixedBitSet::with_capacity(columns.len());
975            for idx in &pk_column_indices {
976                bitset.insert(*idx);
977            }
978            RequiredDist::ShardByKey(bitset)
979        };
980
981        let mut stream_plan = inline_session_timezone_in_exprs(context, stream_plan)?;
982
983        if !not_null_idxs.is_empty() {
984            stream_plan =
985                StreamFilter::filter_out_any_null_rows(stream_plan.clone(), &not_null_idxs);
986        }
987
988        // Determine if the table should be refreshable based on the connector type
989        let refreshable = source_catalog
990            .as_ref()
991            .map(|catalog| {
992                catalog.with_properties.is_batch_connector() || {
993                    matches!(
994                        catalog
995                            .refresh_mode
996                            .as_ref()
997                            .map(|refresh_mode| refresh_mode.refresh_mode),
998                        Some(Some(RefreshMode::FullReload(_)))
999                    )
1000                }
1001            })
1002            .unwrap_or(false);
1003
1004        // Validate that refreshable tables have a user-defined primary key (i.e., does not have rowid)
1005        if refreshable && row_id_index.is_some() {
1006            return Err(crate::error::ErrorCode::BindError(
1007                "Refreshable tables must have a PRIMARY KEY. Please define a primary key for the table."
1008                    .to_owned(),
1009            )
1010            .into());
1011        }
1012
1013        StreamMaterialize::create_for_table(
1014            stream_plan,
1015            table_name,
1016            database_id,
1017            schema_id,
1018            table_required_dist,
1019            Order::any(),
1020            columns,
1021            definition,
1022            conflict_behavior,
1023            version_column_indices,
1024            pk_column_indices,
1025            ttl_watermark_indices,
1026            row_id_index,
1027            version,
1028            retention_seconds,
1029            webhook_info,
1030            engine,
1031            refreshable,
1032        )
1033    }
1034
1035    /// Optimize and generate a create materialized view plan.
1036    pub fn gen_materialize_plan(
1037        self,
1038        database_id: DatabaseId,
1039        schema_id: SchemaId,
1040        mv_name: String,
1041        definition: String,
1042        emit_on_window_close: bool,
1043    ) -> Result<StreamMaterialize> {
1044        let cardinality = self.compute_cardinality();
1045        let stream_plan = self.gen_optimized_stream_plan(emit_on_window_close, true)?;
1046        StreamMaterialize::create(
1047            stream_plan,
1048            mv_name,
1049            database_id,
1050            schema_id,
1051            definition,
1052            TableType::MaterializedView,
1053            cardinality,
1054            None,
1055        )
1056    }
1057
1058    /// Optimize and generate a create index plan.
1059    pub fn gen_index_plan(
1060        self,
1061        index_name: String,
1062        database_id: DatabaseId,
1063        schema_id: SchemaId,
1064        definition: String,
1065        retention_seconds: Option<NonZeroU32>,
1066    ) -> Result<StreamMaterialize> {
1067        let cardinality = self.compute_cardinality();
1068        let stream_plan = self.gen_optimized_stream_plan(false, false)?;
1069
1070        StreamMaterialize::create(
1071            stream_plan,
1072            index_name,
1073            database_id,
1074            schema_id,
1075            definition,
1076            TableType::Index,
1077            cardinality,
1078            retention_seconds,
1079        )
1080    }
1081
1082    pub fn gen_vector_index_plan(
1083        self,
1084        index_name: String,
1085        database_id: DatabaseId,
1086        schema_id: SchemaId,
1087        definition: String,
1088        retention_seconds: Option<NonZeroU32>,
1089        vector_index_info: PbVectorIndexInfo,
1090    ) -> Result<StreamVectorIndexWrite> {
1091        let cardinality = self.compute_cardinality();
1092        let stream_plan = self.gen_optimized_stream_plan(false, false)?;
1093
1094        StreamVectorIndexWrite::create(
1095            stream_plan,
1096            index_name,
1097            database_id,
1098            schema_id,
1099            definition,
1100            cardinality,
1101            retention_seconds,
1102            vector_index_info,
1103        )
1104    }
1105
1106    /// Optimize and generate a create sink plan.
1107    #[expect(clippy::too_many_arguments)]
1108    pub fn gen_sink_plan(
1109        self,
1110        sink_name: String,
1111        definition: String,
1112        properties: WithOptionsSecResolved,
1113        emit_on_window_close: bool,
1114        db_name: String,
1115        sink_from_table_name: String,
1116        format_desc: Option<SinkFormatDesc>,
1117        without_backfill: bool,
1118        target_table: Option<Arc<TableCatalog>>,
1119        partition_info: Option<PartitionComputeInfo>,
1120        user_specified_columns: bool,
1121        auto_refresh_schema_from_table: Option<Arc<TableCatalog>>,
1122        allow_snapshot_backfill: bool,
1123    ) -> Result<StreamSink> {
1124        let backfill_type = if without_backfill {
1125            BackfillType::UpstreamOnly
1126        } else if allow_snapshot_backfill
1127            && self.should_use_snapshot_backfill()
1128            && {
1129                if auto_refresh_schema_from_table.is_some() {
1130                    self.plan.ctx().session_ctx().notice_to_user("Auto schema change only support for ArrangementBackfill. Switched to use ArrangementBackfill");
1131                    false
1132                } else {
1133                    true
1134                }
1135            }
1136        {
1137            assert!(
1138                target_table.is_none(),
1139                "should not allow snapshot backfill for sink-into-table"
1140            );
1141            // Snapshot backfill on sink-into-table is not allowed
1142            BackfillType::SnapshotBackfill
1143        } else if self.should_use_arrangement_backfill() {
1144            BackfillType::ArrangementBackfill
1145        } else {
1146            BackfillType::Backfill
1147        };
1148        if auto_refresh_schema_from_table.is_some()
1149            && backfill_type != BackfillType::ArrangementBackfill
1150        {
1151            return Err(ErrorCode::InvalidInputSyntax(format!(
1152                "auto schema change only support for ArrangementBackfill, but got: {:?}",
1153                backfill_type
1154            ))
1155            .into());
1156        }
1157        let stream_plan =
1158            self.gen_optimized_stream_plan_inner(emit_on_window_close, backfill_type)?;
1159        let target_columns_to_plan_mapping = target_table.as_ref().map(|t| {
1160            let columns = t.columns_without_rw_timestamp();
1161            stream_plan.target_columns_to_plan_mapping(&columns, user_specified_columns)
1162        });
1163
1164        StreamSink::create(
1165            stream_plan,
1166            sink_name,
1167            db_name,
1168            sink_from_table_name,
1169            target_table,
1170            target_columns_to_plan_mapping,
1171            definition,
1172            properties,
1173            format_desc,
1174            partition_info,
1175            auto_refresh_schema_from_table,
1176        )
1177    }
1178
1179    pub fn should_use_arrangement_backfill(&self) -> bool {
1180        let ctx = self.plan.ctx();
1181        let session_ctx = ctx.session_ctx();
1182        let arrangement_backfill_enabled = session_ctx
1183            .env()
1184            .streaming_config()
1185            .developer
1186            .enable_arrangement_backfill;
1187        arrangement_backfill_enabled && session_ctx.config().streaming_use_arrangement_backfill()
1188    }
1189
1190    pub fn should_use_snapshot_backfill(&self) -> bool {
1191        let ctx = self.plan.ctx();
1192        let session_ctx = ctx.session_ctx();
1193        let use_snapshot_backfill = session_ctx
1194            .env()
1195            .streaming_config()
1196            .developer
1197            .enable_snapshot_backfill
1198            && session_ctx.config().streaming_use_snapshot_backfill();
1199        if use_snapshot_backfill {
1200            if let Some(warning_msg) = self.plan.forbid_snapshot_backfill() {
1201                self.plan.ctx().session_ctx().notice_to_user(warning_msg);
1202                false
1203            } else {
1204                true
1205            }
1206        } else {
1207            false
1208        }
1209    }
1210}
1211
1212impl<P: PlanPhase> PlanRoot<P> {
1213    /// used when the plan has a target relation such as DML and sink into table, return the mapping from table's columns to the plan's schema
1214    pub fn target_columns_to_plan_mapping(
1215        &self,
1216        tar_cols: &[ColumnCatalog],
1217        user_specified_columns: bool,
1218    ) -> Vec<Option<usize>> {
1219        #[allow(clippy::disallowed_methods)]
1220        let visible_cols: Vec<(usize, String)> = self
1221            .out_fields
1222            .ones()
1223            .zip_eq(self.out_names.iter().cloned())
1224            .collect_vec();
1225
1226        let visible_col_idxes = visible_cols.iter().map(|(i, _)| *i).collect_vec();
1227        let visible_col_idxes_by_name = visible_cols
1228            .iter()
1229            .map(|(i, name)| (name.as_ref(), *i))
1230            .collect::<BTreeMap<_, _>>();
1231
1232        tar_cols
1233            .iter()
1234            .enumerate()
1235            .filter(|(_, tar_col)| tar_col.can_dml())
1236            .map(|(tar_i, tar_col)| {
1237                if user_specified_columns {
1238                    visible_col_idxes_by_name.get(tar_col.name()).cloned()
1239                } else {
1240                    (tar_i < visible_col_idxes.len()).then(|| visible_cols[tar_i].0)
1241                }
1242            })
1243            .collect()
1244    }
1245}
1246
1247fn find_version_column_indices(
1248    column_catalog: &Vec<ColumnCatalog>,
1249    version_column_names: Vec<String>,
1250) -> Result<Vec<usize>> {
1251    let mut indices = Vec::new();
1252    for version_column_name in version_column_names {
1253        let mut found = false;
1254        for (index, column) in column_catalog.iter().enumerate() {
1255            if column.column_desc.name == version_column_name {
1256                if let &DataType::Jsonb
1257                | &DataType::List(_)
1258                | &DataType::Struct(_)
1259                | &DataType::Bytea
1260                | &DataType::Boolean = column.data_type()
1261                {
1262                    return Err(ErrorCode::InvalidInputSyntax(format!(
1263                        "Version column {} must be of a comparable data type",
1264                        version_column_name
1265                    ))
1266                    .into());
1267                }
1268                indices.push(index);
1269                found = true;
1270                break;
1271            }
1272        }
1273        if !found {
1274            return Err(ErrorCode::InvalidInputSyntax(format!(
1275                "Version column {} not found",
1276                version_column_name
1277            ))
1278            .into());
1279        }
1280    }
1281    Ok(indices)
1282}
1283
1284fn const_eval_exprs<C: ConventionMarker>(plan: PlanRef<C>) -> Result<PlanRef<C>> {
1285    let mut const_eval_rewriter = ConstEvalRewriter { error: None };
1286
1287    let plan = plan.rewrite_exprs_recursive(&mut const_eval_rewriter);
1288    if let Some(error) = const_eval_rewriter.error {
1289        return Err(error);
1290    }
1291    Ok(plan)
1292}
1293
1294fn inline_session_timezone_in_exprs<C: ConventionMarker>(
1295    ctx: OptimizerContextRef,
1296    plan: PlanRef<C>,
1297) -> Result<PlanRef<C>> {
1298    let mut v = TimestamptzExprFinder::default();
1299    plan.visit_exprs_recursive(&mut v);
1300    if v.has() {
1301        Ok(plan.rewrite_exprs_recursive(ctx.session_timezone().deref_mut()))
1302    } else {
1303        Ok(plan)
1304    }
1305}
1306
1307fn exist_and_no_exchange_before(
1308    plan: &BatchPlanRef,
1309    is_candidate: fn(&BatchPlanRef) -> bool,
1310) -> bool {
1311    if plan.node_type() == BatchPlanNodeType::BatchExchange {
1312        return false;
1313    }
1314    is_candidate(plan)
1315        || plan
1316            .inputs()
1317            .iter()
1318            .any(|input| exist_and_no_exchange_before(input, is_candidate))
1319}
1320
1321impl BatchPlanRef {
1322    fn is_user_table_scan(&self) -> bool {
1323        self.node_type() == BatchPlanNodeType::BatchSeqScan
1324            || self.node_type() == BatchPlanNodeType::BatchLogSeqScan
1325            || self.node_type() == BatchPlanNodeType::BatchVectorSearch
1326    }
1327
1328    fn is_source_scan(&self) -> bool {
1329        self.node_type() == BatchPlanNodeType::BatchSource
1330            || self.node_type() == BatchPlanNodeType::BatchKafkaScan
1331            || self.node_type() == BatchPlanNodeType::BatchIcebergScan
1332    }
1333
1334    fn is_insert(&self) -> bool {
1335        self.node_type() == BatchPlanNodeType::BatchInsert
1336    }
1337
1338    fn is_update(&self) -> bool {
1339        self.node_type() == BatchPlanNodeType::BatchUpdate
1340    }
1341
1342    fn is_delete(&self) -> bool {
1343        self.node_type() == BatchPlanNodeType::BatchDelete
1344    }
1345}
1346
1347/// As we always run the root stage locally, for some plan in root stage which need to execute in
1348/// compute node we insert an additional exhchange before it to avoid to include it in the root
1349/// stage.
1350///
1351/// Returns `true` if we must insert an additional exchange to ensure this.
1352fn require_additional_exchange_on_root_in_distributed_mode(plan: BatchPlanRef) -> bool {
1353    assert_eq!(plan.distribution(), &Distribution::Single);
1354    exist_and_no_exchange_before(&plan, |plan| {
1355        plan.is_user_table_scan()
1356            || plan.is_source_scan()
1357            || plan.is_insert()
1358            || plan.is_update()
1359            || plan.is_delete()
1360    })
1361}
1362
1363/// The purpose is same as `require_additional_exchange_on_root_in_distributed_mode`. We separate
1364/// them for the different requirement of plan node in different execute mode.
1365fn require_additional_exchange_on_root_in_local_mode(plan: BatchPlanRef) -> bool {
1366    assert_eq!(plan.distribution(), &Distribution::Single);
1367    exist_and_no_exchange_before(&plan, |plan| {
1368        plan.is_user_table_scan() || plan.is_source_scan() || plan.is_insert()
1369    })
1370}
1371
1372#[cfg(test)]
1373mod tests {
1374    use super::*;
1375    use crate::optimizer::plan_node::LogicalValues;
1376
1377    #[tokio::test]
1378    async fn test_as_subplan() {
1379        let ctx = OptimizerContext::mock().await;
1380        let values = LogicalValues::new(
1381            vec![],
1382            Schema::new(vec![
1383                Field::with_name(DataType::Int32, "v1"),
1384                Field::with_name(DataType::Varchar, "v2"),
1385            ]),
1386            ctx,
1387        )
1388        .into();
1389        let out_fields = FixedBitSet::with_capacity_and_blocks(2, [1]);
1390        let out_names = vec!["v1".into()];
1391        let root = PlanRoot::new_with_logical_plan(
1392            values,
1393            RequiredDist::Any,
1394            Order::any(),
1395            out_fields,
1396            out_names,
1397        );
1398        let subplan = root.into_unordered_subplan();
1399        assert_eq!(
1400            subplan.schema(),
1401            &Schema::new(vec![Field::with_name(DataType::Int32, "v1")])
1402        );
1403    }
1404}