risingwave_frontend/optimizer/property/distribution.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! "A -> B" represent A satisfies B
//! x
//! only as a required property x can used as both required
//! x and provided property
//! x
//! ┌───┐ x┌──────┐
//! │Any◄─────────────────┤single│
//! └─▲─┘ x└──────┘
//! │ x
//! │ x
//! │ x
//! ┌───┴────┐ x┌──────────┐
//! │AnyShard◄──────────────┤SomeShard │
//! └───▲────┘ x└──────────┘
//! │ x
//! ┌───┴───────────┐ x┌──────────────┐ ┌──────────────┐
//! │ShardByKey(a,b)◄───┬───┤HashShard(a,b)│ │HashShard(b,a)│
//! └───▲──▲────────┘ │ x└──────────────┘ └┬─────────────┘
//! │ │ │ x │
//! │ │ └─────────────────────┘
//! │ │ x
//! │ ┌┴────────────┐ x┌────────────┐
//! │ │ShardByKey(a)◄───┤HashShard(a)│
//! │ └─────────────┘ x└────────────┘
//! │ x
//! ┌┴────────────┐ x┌────────────┐
//! │ShardByKey(b)◄──────┤HashShard(b)│
//! └─────────────┘ x└────────────┘
//! x
//! x
use std::collections::HashMap;
use std::fmt;
use std::fmt::Debug;
use fixedbitset::FixedBitSet;
use generic::PhysicalPlanRef;
use itertools::Itertools;
use risingwave_batch::worker_manager::worker_node_manager::WorkerNodeSelector;
use risingwave_common::catalog::{FieldDisplay, Schema, TableId};
use risingwave_common::hash::WorkerSlotId;
use risingwave_pb::batch_plan::exchange_info::{
ConsistentHashInfo, Distribution as PbDistribution, DistributionMode, HashInfo,
};
use risingwave_pb::batch_plan::ExchangeInfo;
use super::super::plan_node::*;
use crate::catalog::catalog_service::CatalogReader;
use crate::catalog::FragmentId;
use crate::error::Result;
use crate::optimizer::property::Order;
/// the distribution property provided by a operator.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Distribution {
/// There is only one partition. All records are placed on it.
Single,
/// Records are sharded into partitions, and satisfy the `AnyShard` but without any guarantee
/// about their placement rules.
SomeShard,
/// Records are sharded into partitions based on the hash value of some columns, which means
/// the records with the same hash values must be on the same partition.
/// `usize` is the index of column used as the distribution key.
HashShard(Vec<usize>),
/// A special kind of provided distribution which is almost the same as
/// [`Distribution::HashShard`], but may have different vnode mapping.
///
/// It exists because the upstream MV can be scaled independently. So we use
/// `UpstreamHashShard` to **force an exchange to be inserted**.
///
/// Alternatively, [`Distribution::SomeShard`] can also be used to insert an exchange, but
/// `UpstreamHashShard` contains distribution keys, which might be useful in some cases, e.g.,
/// two-phase Agg. It also satisfies [`RequiredDist::ShardByKey`].
///
/// `TableId` is used to represent the data distribution(`vnode_mapping`) of this
/// `UpstreamHashShard`. The scheduler can fetch `TableId`'s corresponding `vnode_mapping` to do
/// shuffle.
UpstreamHashShard(Vec<usize>, TableId),
/// Records are available on all downstream shards.
Broadcast,
}
/// the distribution property requirement.
#[derive(Debug, Clone, PartialEq)]
pub enum RequiredDist {
/// with any distribution
Any,
/// records are shard on partitions, which means every record should belong to a partition
AnyShard,
/// records are shard on partitions based on some keys(order-irrelevance, ShardByKey({a,b}) is
/// equivalent with ShardByKey({b,a})), which means the records with same keys must be on
/// the same partition, as required property only.
ShardByKey(FixedBitSet),
/// must be the same with the physical distribution
PhysicalDist(Distribution),
}
impl Distribution {
pub fn to_prost(
&self,
output_count: u32,
catalog_reader: &CatalogReader,
worker_node_manager: &WorkerNodeSelector,
) -> Result<ExchangeInfo> {
let exchange_info = ExchangeInfo {
mode: match self {
Distribution::Single => DistributionMode::Single,
Distribution::HashShard(_) => DistributionMode::Hash,
// TODO: add round robin DistributionMode
Distribution::SomeShard => DistributionMode::Single,
Distribution::Broadcast => DistributionMode::Broadcast,
Distribution::UpstreamHashShard(_, _) => DistributionMode::ConsistentHash,
} as i32,
distribution: match self {
Distribution::Single => None,
Distribution::HashShard(key) => {
assert!(
!key.is_empty(),
"hash key should not be empty, use `Single` instead"
);
Some(PbDistribution::HashInfo(HashInfo {
output_count,
key: key.iter().map(|num| *num as u32).collect(),
}))
}
// TODO: add round robin distribution
Distribution::SomeShard => None,
Distribution::Broadcast => None,
Distribution::UpstreamHashShard(key, table_id) => {
assert!(
!key.is_empty(),
"hash key should not be empty, use `Single` instead"
);
let vnode_mapping = worker_node_manager
.fragment_mapping(Self::get_fragment_id(catalog_reader, table_id)?)?;
let worker_slot_to_id_map: HashMap<WorkerSlotId, u32> = vnode_mapping
.iter_unique()
.enumerate()
.map(|(i, worker_slot_id)| (worker_slot_id, i as u32))
.collect();
Some(PbDistribution::ConsistentHashInfo(ConsistentHashInfo {
vmap: vnode_mapping
.iter()
.map(|id| worker_slot_to_id_map[&id])
.collect_vec(),
key: key.iter().map(|num| *num as u32).collect(),
}))
}
},
};
Ok(exchange_info)
}
/// check if the distribution satisfies other required distribution
pub fn satisfies(&self, required: &RequiredDist) -> bool {
match required {
RequiredDist::Any => true,
RequiredDist::AnyShard => {
matches!(
self,
Distribution::SomeShard
| Distribution::HashShard(_)
| Distribution::UpstreamHashShard(_, _)
| Distribution::Broadcast
)
}
RequiredDist::ShardByKey(required_key) => match self {
Distribution::HashShard(hash_key)
| Distribution::UpstreamHashShard(hash_key, _) => {
hash_key.iter().all(|idx| required_key.contains(*idx))
}
_ => false,
},
RequiredDist::PhysicalDist(other) => self == other,
}
}
/// Get distribution column indices. After optimization, only `HashShard` and `Single` are
/// valid.
pub fn dist_column_indices(&self) -> &[usize] {
match self {
Distribution::Single | Distribution::SomeShard | Distribution::Broadcast => {
Default::default()
}
Distribution::HashShard(dists) | Distribution::UpstreamHashShard(dists, _) => dists,
}
}
#[inline(always)]
fn get_fragment_id(catalog_reader: &CatalogReader, table_id: &TableId) -> Result<FragmentId> {
catalog_reader
.read_guard()
.get_any_table_by_id(table_id)
.map(|table| table.fragment_id)
.map_err(Into::into)
}
}
impl fmt::Display for Distribution {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("[")?;
match self {
Self::Single => f.write_str("Single")?,
Self::SomeShard => f.write_str("SomeShard")?,
Self::Broadcast => f.write_str("Broadcast")?,
Self::HashShard(vec) | Self::UpstreamHashShard(vec, _) => {
for key in vec {
std::fmt::Debug::fmt(&key, f)?;
}
}
}
f.write_str("]")
}
}
pub struct DistributionDisplay<'a> {
pub distribution: &'a Distribution,
pub input_schema: &'a Schema,
}
impl DistributionDisplay<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let that = self.distribution;
match that {
Distribution::Single => f.write_str("Single"),
Distribution::SomeShard => f.write_str("SomeShard"),
Distribution::Broadcast => f.write_str("Broadcast"),
Distribution::HashShard(vec) | Distribution::UpstreamHashShard(vec, _) => {
if let Distribution::HashShard(_) = that {
f.write_str("HashShard(")?;
} else {
f.write_str("UpstreamHashShard(")?;
}
for (pos, key) in vec.iter().copied().with_position() {
std::fmt::Debug::fmt(
&FieldDisplay(self.input_schema.fields.get(key).unwrap()),
f,
)?;
match pos {
itertools::Position::First | itertools::Position::Middle => {
f.write_str(", ")?;
}
_ => {}
}
}
f.write_str(")")
}
}
}
}
impl fmt::Debug for DistributionDisplay<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.fmt(f)
}
}
impl fmt::Display for DistributionDisplay<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.fmt(f)
}
}
impl RequiredDist {
pub fn single() -> Self {
Self::PhysicalDist(Distribution::Single)
}
pub fn shard_by_key(tot_col_num: usize, key: &[usize]) -> Self {
let mut cols = FixedBitSet::with_capacity(tot_col_num);
for i in key {
cols.insert(*i);
}
assert!(!cols.is_clear());
Self::ShardByKey(cols)
}
pub fn hash_shard(key: &[usize]) -> Self {
assert!(!key.is_empty());
Self::PhysicalDist(Distribution::HashShard(key.to_vec()))
}
pub fn enforce_if_not_satisfies(
&self,
mut plan: PlanRef,
required_order: &Order,
) -> Result<PlanRef> {
if let Convention::Batch = plan.convention() {
plan = required_order.enforce_if_not_satisfies(plan)?;
}
if !plan.distribution().satisfies(self) {
Ok(self.enforce(plan, required_order))
} else {
Ok(plan)
}
}
pub fn no_shuffle(plan: PlanRef) -> PlanRef {
match plan.convention() {
Convention::Stream => StreamExchange::new_no_shuffle(plan).into(),
Convention::Logical | Convention::Batch => unreachable!(),
}
}
/// check if the distribution satisfies other required distribution
pub fn satisfies(&self, required: &RequiredDist) -> bool {
match self {
RequiredDist::Any => matches!(required, RequiredDist::Any),
RequiredDist::AnyShard => {
matches!(required, RequiredDist::Any | RequiredDist::AnyShard)
}
RequiredDist::ShardByKey(key) => match required {
RequiredDist::Any | RequiredDist::AnyShard => true,
RequiredDist::ShardByKey(required_key) => key.is_subset(required_key),
_ => false,
},
RequiredDist::PhysicalDist(dist) => dist.satisfies(required),
}
}
pub fn enforce(&self, plan: PlanRef, required_order: &Order) -> PlanRef {
let dist = self.to_dist();
match plan.convention() {
Convention::Batch => BatchExchange::new(plan, required_order.clone(), dist).into(),
Convention::Stream => StreamExchange::new(plan, dist).into(),
_ => unreachable!(),
}
}
fn to_dist(&self) -> Distribution {
match self {
// all the distribution satisfy the Any, and the function can be only called by
// `enforce_if_not_satisfies`
RequiredDist::Any => unreachable!(),
// TODO: add round robin distributed type
RequiredDist::AnyShard => todo!(),
RequiredDist::ShardByKey(required_keys) => {
Distribution::HashShard(required_keys.ones().collect())
}
RequiredDist::PhysicalDist(dist) => dist.clone(),
}
}
}
#[cfg(test)]
mod tests {
use super::{Distribution, RequiredDist};
#[test]
fn hash_shard_satisfy() {
let d1 = Distribution::HashShard(vec![0, 1]);
let d2 = Distribution::HashShard(vec![1, 0]);
let d3 = Distribution::HashShard(vec![0]);
let d4 = Distribution::HashShard(vec![1]);
let r1 = RequiredDist::shard_by_key(2, &[0, 1]);
let r3 = RequiredDist::shard_by_key(2, &[0]);
let r4 = RequiredDist::shard_by_key(2, &[1]);
assert!(d1.satisfies(&RequiredDist::PhysicalDist(d1.clone())));
assert!(d2.satisfies(&RequiredDist::PhysicalDist(d2.clone())));
assert!(d3.satisfies(&RequiredDist::PhysicalDist(d3.clone())));
assert!(d4.satisfies(&RequiredDist::PhysicalDist(d4.clone())));
assert!(!d2.satisfies(&RequiredDist::PhysicalDist(d1.clone())));
assert!(!d3.satisfies(&RequiredDist::PhysicalDist(d1.clone())));
assert!(!d4.satisfies(&RequiredDist::PhysicalDist(d1.clone())));
assert!(!d1.satisfies(&RequiredDist::PhysicalDist(d3.clone())));
assert!(!d2.satisfies(&RequiredDist::PhysicalDist(d3.clone())));
assert!(!d1.satisfies(&RequiredDist::PhysicalDist(d4.clone())));
assert!(!d2.satisfies(&RequiredDist::PhysicalDist(d4.clone())));
assert!(d1.satisfies(&r1));
assert!(d2.satisfies(&r1));
assert!(d3.satisfies(&r1));
assert!(d4.satisfies(&r1));
assert!(!d1.satisfies(&r3));
assert!(!d2.satisfies(&r3));
assert!(d3.satisfies(&r3));
assert!(!d4.satisfies(&r3));
assert!(!d1.satisfies(&r4));
assert!(!d2.satisfies(&r4));
assert!(!d3.satisfies(&r4));
assert!(d4.satisfies(&r4));
assert!(r3.satisfies(&r1));
assert!(r4.satisfies(&r1));
assert!(!r1.satisfies(&r3));
assert!(!r1.satisfies(&r4));
assert!(!r3.satisfies(&r4));
assert!(!r4.satisfies(&r3));
}
}