risingwave_frontend/optimizer/rule/apply_agg_transpose_rule.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use risingwave_common::types::DataType;
use risingwave_expr::aggregate::{AggType, PbAggKind};
use risingwave_pb::plan_common::JoinType;
use super::{ApplyOffsetRewriter, BoxedRule, Rule};
use crate::expr::{ExprImpl, ExprType, FunctionCall, InputRef};
use crate::optimizer::plan_node::generic::Agg;
use crate::optimizer::plan_node::{LogicalAgg, LogicalApply, LogicalFilter, LogicalProject};
use crate::optimizer::PlanRef;
use crate::utils::{Condition, IndexSet};
/// Transpose `LogicalApply` and `LogicalAgg`.
///
/// Before:
///
/// ```text
/// LogicalApply
/// / \
/// Domain LogicalAgg
/// |
/// Input
/// ```
///
/// After:
///
/// ```text
/// LogicalAgg
/// |
/// LogicalApply
/// / \
/// Domain Input
/// ```
pub struct ApplyAggTransposeRule {}
impl Rule for ApplyAggTransposeRule {
fn apply(&self, plan: PlanRef) -> Option<PlanRef> {
let apply: &LogicalApply = plan.as_logical_apply()?;
let (left, right, on, join_type, correlated_id, correlated_indices, max_one_row) =
apply.clone().decompose();
assert_eq!(join_type, JoinType::Inner);
let agg: &LogicalAgg = right.as_logical_agg()?;
let (mut agg_calls, agg_group_key, grouping_sets, agg_input, enable_two_phase) =
agg.clone().decompose();
assert!(grouping_sets.is_empty());
let is_scalar_agg = agg_group_key.is_empty();
let apply_left_len = left.schema().len();
if !is_scalar_agg && max_one_row {
// We can only eliminate max_one_row for scalar aggregation.
return None;
}
let input = if is_scalar_agg {
// add a constant column to help convert count(*) to count(c) where c is non-nullable.
let mut exprs: Vec<ExprImpl> = agg_input
.schema()
.data_types()
.into_iter()
.enumerate()
.map(|(i, data_type)| InputRef::new(i, data_type).into())
.collect();
exprs.push(ExprImpl::literal_int(1));
LogicalProject::create(agg_input, exprs)
} else {
agg_input
};
let node = if is_scalar_agg {
// LOJ Apply need to be converted to cross Apply.
let left_len = left.schema().len();
let eq_predicates = left
.schema()
.data_types()
.into_iter()
.enumerate()
.map(|(i, data_type)| {
let left = InputRef::new(i, data_type.clone());
let right = InputRef::new(i + left_len, data_type);
// use null-safe equal
FunctionCall::new_unchecked(
ExprType::IsNotDistinctFrom,
vec![left.into(), right.into()],
DataType::Boolean,
)
.into()
})
.collect();
LogicalApply::new(
left.clone(),
input,
JoinType::LeftOuter,
Condition::true_cond(),
correlated_id,
correlated_indices.clone(),
false,
false,
)
.translate_apply(left, eq_predicates)
} else {
LogicalApply::create(
left,
input,
JoinType::Inner,
Condition::true_cond(),
correlated_id,
correlated_indices.clone(),
false,
)
};
let group_agg = {
// shift index of agg_calls' `InputRef` with `apply_left_len`.
let offset = apply_left_len as isize;
let mut rewriter =
ApplyOffsetRewriter::new(apply_left_len, &correlated_indices, correlated_id);
agg_calls.iter_mut().for_each(|agg_call| {
agg_call.inputs.iter_mut().for_each(|input_ref| {
input_ref.shift_with_offset(offset);
});
agg_call
.order_by
.iter_mut()
.for_each(|o| o.shift_with_offset(offset));
agg_call.filter = agg_call.filter.clone().rewrite_expr(&mut rewriter);
});
if is_scalar_agg {
// convert count(*) to count(1).
let pos_of_constant_column = node.schema().len() - 1;
agg_calls.iter_mut().for_each(|agg_call| {
match agg_call.agg_type {
AggType::Builtin(PbAggKind::Count) if agg_call.inputs.is_empty() => {
let input_ref = InputRef::new(pos_of_constant_column, DataType::Int32);
agg_call.inputs.push(input_ref);
}
AggType::Builtin(PbAggKind::ArrayAgg
| PbAggKind::JsonbAgg
| PbAggKind::JsonbObjectAgg)
| AggType::UserDefined(_)
| AggType::WrapScalar(_) => {
let input_ref = InputRef::new(pos_of_constant_column, DataType::Int32);
let cond = FunctionCall::new(ExprType::IsNotNull, vec![input_ref.into()]).unwrap();
agg_call.filter.conjunctions.push(cond.into());
}
AggType::Builtin(PbAggKind::Count
| PbAggKind::Sum
| PbAggKind::Sum0
| PbAggKind::Avg
| PbAggKind::Min
| PbAggKind::Max
| PbAggKind::BitAnd
| PbAggKind::BitOr
| PbAggKind::BitXor
| PbAggKind::BoolAnd
| PbAggKind::BoolOr
| PbAggKind::StringAgg
// not in PostgreSQL
| PbAggKind::ApproxCountDistinct
| PbAggKind::FirstValue
| PbAggKind::LastValue
| PbAggKind::InternalLastSeenValue
// All statistical aggregates only consider non-null inputs.
| PbAggKind::ApproxPercentile
| PbAggKind::VarPop
| PbAggKind::VarSamp
| PbAggKind::StddevPop
| PbAggKind::StddevSamp
// All ordered-set aggregates ignore null values in their aggregated input.
| PbAggKind::PercentileCont
| PbAggKind::PercentileDisc
| PbAggKind::Mode
// `grouping` has no *aggregate* input and unreachable when `is_scalar_agg`.
| PbAggKind::Grouping)
=> {
// no-op when `agg(0 rows) == agg(1 row of nulls)`
}
AggType::Builtin(PbAggKind::Unspecified | PbAggKind::UserDefined | PbAggKind::WrapScalar) => {
panic!("Unexpected aggregate function: {:?}", agg_call.agg_type)
}
}
});
}
let mut group_keys: IndexSet = (0..apply_left_len).collect();
group_keys.extend(agg_group_key.indices().map(|key| key + apply_left_len));
Agg::new(agg_calls, group_keys, node)
.with_enable_two_phase(enable_two_phase)
.into()
};
let filter = LogicalFilter::create(group_agg, on);
Some(filter)
}
}
impl ApplyAggTransposeRule {
pub fn create() -> BoxedRule {
Box::new(ApplyAggTransposeRule {})
}
}