risingwave_frontend/optimizer/rule/
distinct_agg_rule.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashMap;
use std::mem;

use fixedbitset::FixedBitSet;
use itertools::Itertools;
use risingwave_common::types::DataType;
use risingwave_expr::aggregate::{agg_types, AggType, PbAggKind};

use super::{BoxedRule, Rule};
use crate::expr::{CollectInputRef, ExprType, FunctionCall, InputRef, Literal};
use crate::optimizer::plan_node::generic::Agg;
use crate::optimizer::plan_node::{LogicalAgg, LogicalExpand, LogicalProject, PlanAggCall};
use crate::optimizer::PlanRef;
use crate::utils::{ColIndexMapping, Condition, IndexSet};

/// Transform distinct aggregates to `LogicalAgg` -> `LogicalAgg` -> `Expand` -> `Input`.
pub struct DistinctAggRule {
    for_stream: bool,
}

impl Rule for DistinctAggRule {
    fn apply(&self, plan: PlanRef) -> Option<PlanRef> {
        let agg: &LogicalAgg = plan.as_logical_agg()?;
        let (mut agg_calls, mut agg_group_keys, grouping_sets, input, enable_two_phase) =
            agg.clone().decompose();
        assert!(grouping_sets.is_empty());

        if agg_calls.iter().all(|c| !c.distinct) {
            // there's no distinct agg call
            return None;
        }

        if self.for_stream && !agg_group_keys.is_empty() {
            // Due to performance issue, we don't do 2-phase agg for stream distinct agg with group
            // by. See https://github.com/risingwavelabs/risingwave/issues/7271 for more.
            return None;
        }

        if !agg_calls.iter().all(|c| {
            assert!(
                !matches!(c.agg_type, agg_types::rewritten!()),
                "We shouldn't see agg kind {} here",
                c.agg_type
            );
            let agg_type_ok = !matches!(c.agg_type, agg_types::simply_cannot_two_phase!());
            let order_ok = matches!(
                c.agg_type,
                agg_types::result_unaffected_by_order_by!()
                    | AggType::Builtin(PbAggKind::ApproxPercentile)
            ) || c.order_by.is_empty();
            agg_type_ok && order_ok
        }) {
            tracing::warn!("DistinctAggRule: unsupported agg kind, fallback to backend impl");
            return None;
        }

        let (node, flag_values, has_expand) =
            Self::build_expand(input, &mut agg_group_keys, &mut agg_calls);
        let mid_agg =
            Self::build_middle_agg(node, agg_group_keys.clone(), agg_calls.clone(), has_expand);

        // The middle agg will extend some fields for `agg_group_keys`, so we need to find out the
        // original group key for the final agg.
        let mut final_agg_group_keys = IndexSet::empty();
        for (i, v) in mid_agg.group_key.indices().enumerate() {
            if agg_group_keys.contains(v) {
                final_agg_group_keys.insert(i);
            }
        }

        Some(Self::build_final_agg(
            mid_agg,
            final_agg_group_keys,
            agg_calls,
            flag_values,
            has_expand,
            enable_two_phase,
        ))
    }
}

impl DistinctAggRule {
    pub fn create(for_stream: bool) -> BoxedRule {
        Box::new(DistinctAggRule { for_stream })
    }

    /// Construct `Expand` for distinct aggregates.
    /// `group_keys` and `agg_calls` will be changed in `build_project` due to column pruning.
    /// It returns either `LogicalProject` or original input, plus `flag_values` for every distinct
    /// aggregate and `has_expand` as a flag.
    ///
    /// To simplify, we will first deduplicate `column_subsets` and then skip building
    /// `Expand` if there is only one `subset`.
    fn build_expand(
        input: PlanRef,
        group_keys: &mut IndexSet,
        agg_calls: &mut Vec<PlanAggCall>,
    ) -> (PlanRef, Vec<usize>, bool) {
        let input_schema_len = input.schema().len();
        // each `subset` in `column_subsets` consists of `group_keys`, `agg_call`'s input indices
        // and the input indices of `agg_call`'s `filter`.
        let mut column_subsets = vec![];
        // flag values of distinct aggregates.
        let mut flag_values = vec![];
        // mapping from `subset` to `flag_value`, which is used to deduplicate `column_subsets`.
        let mut hash_map = HashMap::new();
        let (distinct_aggs, non_distinct_aggs): (Vec<_>, Vec<_>) =
            agg_calls.iter().partition(|agg_call| agg_call.distinct);
        assert!(!distinct_aggs.is_empty());

        if !non_distinct_aggs.is_empty() {
            let subset = {
                let mut subset = group_keys.clone();
                non_distinct_aggs.iter().for_each(|agg_call| {
                    subset.extend(agg_call.input_indices());
                });
                subset.to_vec()
            };
            hash_map.insert(subset.clone(), 0);
            column_subsets.push(subset);
        }

        distinct_aggs.iter().for_each(|agg_call| {
            let subset = {
                let mut subset = group_keys.clone();
                subset.extend(agg_call.input_indices());
                subset.to_vec()
            };
            if let Some(i) = hash_map.get(&subset) {
                flag_values.push(*i);
            } else {
                let flag_value = column_subsets.len();
                flag_values.push(flag_value);
                hash_map.insert(subset.clone(), flag_value);
                column_subsets.push(subset);
            }
        });

        let n_different_distinct = distinct_aggs
            .iter()
            .unique_by(|agg_call| agg_call.input_indices()[0])
            .count();
        assert_ne!(n_different_distinct, 0); // since `distinct_aggs` is not empty here
        if n_different_distinct == 1 {
            // no need to have expand if there is only one distinct aggregates.
            return (input, flag_values, false);
        }

        let expand = LogicalExpand::create(input, column_subsets);
        // manual version of column pruning for expand.
        let project = Self::build_project(input_schema_len, expand, group_keys, agg_calls);
        (project, flag_values, true)
    }

    /// Used to do column pruning for `Expand`.
    fn build_project(
        input_schema_len: usize,
        expand: PlanRef,
        group_keys: &mut IndexSet,
        agg_calls: &mut Vec<PlanAggCall>,
    ) -> PlanRef {
        // shift the indices of filter first to make later rewrite more convenient.
        let mut shift_with_offset =
            ColIndexMapping::with_shift_offset(input_schema_len, input_schema_len as isize);
        for agg_call in &mut *agg_calls {
            agg_call.filter = mem::replace(&mut agg_call.filter, Condition::true_cond())
                .rewrite_expr(&mut shift_with_offset);
        }

        // collect indices.
        let expand_schema_len = expand.schema().len();
        let mut input_indices = CollectInputRef::with_capacity(expand_schema_len);
        input_indices.extend(group_keys.indices());
        for agg_call in &*agg_calls {
            input_indices.extend(agg_call.input_indices());
            agg_call.filter.visit_expr(&mut input_indices);
        }
        // append `flag`.
        input_indices.extend(vec![expand_schema_len - 1]);
        let mut mapping = ColIndexMapping::with_remaining_columns(
            &FixedBitSet::from(input_indices).ones().collect_vec(),
            expand_schema_len,
        );

        // remap indices.
        let mut new_group_keys = IndexSet::empty();
        for i in group_keys.indices() {
            new_group_keys.insert(mapping.map(i))
        }
        *group_keys = new_group_keys;
        for agg_call in agg_calls {
            for input in &mut agg_call.inputs {
                input.index = mapping.map(input.index);
            }
            agg_call.filter = mem::replace(&mut agg_call.filter, Condition::true_cond())
                .rewrite_expr(&mut mapping);
        }

        LogicalProject::with_mapping(expand, mapping).into()
    }

    fn build_middle_agg(
        project: PlanRef,
        mut group_keys: IndexSet,
        agg_calls: Vec<PlanAggCall>,
        has_expand: bool,
    ) -> Agg<PlanRef> {
        // The middle `LogicalAgg` groups by (`agg_group_keys` + arguments of distinct aggregates +
        // `flag`).
        let agg_calls = agg_calls
            .into_iter()
            .filter_map(|mut agg_call| {
                if agg_call.distinct {
                    // collect distinct agg's input indices.
                    group_keys.extend(agg_call.input_indices());
                    // filter out distinct agg without real filter(i.e. filter that isn't always
                    // true).
                    if agg_call.filter.always_true() {
                        return None;
                    }
                    // convert distinct agg with real filter to count(*) with original filter.
                    agg_call = PlanAggCall::count_star().with_condition(agg_call.filter);
                }
                Some(agg_call)
            })
            .collect_vec();
        if has_expand {
            // append `flag`.
            group_keys.insert(project.schema().len() - 1);
        }
        Agg::new(agg_calls, group_keys, project).with_enable_two_phase(false)
    }

    fn build_final_agg(
        mid_agg: Agg<PlanRef>,
        final_agg_group_keys: IndexSet,
        mut agg_calls: Vec<PlanAggCall>,
        flag_values: Vec<usize>,
        has_expand: bool,
        enable_two_phase: bool,
    ) -> PlanRef {
        // the index of `flag` in schema of the middle `LogicalAgg`, if has `Expand`.
        let pos_of_flag = mid_agg.group_key.len() - 1;
        let mut flag_values = flag_values.into_iter();

        // ```ignore
        // if has `Expand`, the input(middle agg) has the following schema:
        // original group columns | distinct agg arguments | flag | count_star_with_filter or non-distinct agg
        // <-                group                              -> <-             agg calls                 ->
        // ```

        // scan through `count_star_with_filter` or `non-distinct agg`.
        let mut index_of_middle_agg = mid_agg.group_key.len();
        agg_calls.iter_mut().for_each(|agg_call| {
            let flag_value = if agg_call.distinct {
                agg_call.distinct = false;

                agg_call.inputs.iter_mut().for_each(|input_ref| {
                    input_ref.index = mid_agg
                        .group_key
                        .indices()
                        .position(|x| x == input_ref.index)
                        .unwrap();
                });

                // distinct-agg with real filter has its corresponding middle agg, which is count(*)
                // with its original filter.
                if !agg_call.filter.always_true() {
                    // make sure count(*) with original filter > 0.
                    let check_count = FunctionCall::new(
                        ExprType::GreaterThan,
                        vec![
                            InputRef::new(index_of_middle_agg, DataType::Int64).into(),
                            Literal::new(Some(0_i64.into()), DataType::Int64).into(),
                        ],
                    )
                    .unwrap();
                    index_of_middle_agg += 1;
                    agg_call.filter.conjunctions = vec![check_count.into()];
                }

                flag_values.next().unwrap() as i64
            } else {
                // non-distinct agg has its corresponding middle agg.
                agg_call.inputs = vec![InputRef::new(
                    index_of_middle_agg,
                    agg_call.return_type.clone(),
                )];
                index_of_middle_agg += 1;

                // the filter of non-distinct agg has been calculated in middle agg.
                agg_call.filter = Condition::true_cond();

                // change final agg's agg_type just like two-phase agg.
                agg_call.agg_type = agg_call.agg_type.partial_to_total().expect(
                    "we should get a valid total phase agg kind here since unsupported cases have been filtered out"
                );

                // the index of non-distinct aggs' subset in `column_subsets` is always 0 if it
                // exists.
                0
            };
            if has_expand {
                // `filter_expr` is used to pick up the rows that are really needed by aggregates.
                let filter_expr = FunctionCall::new(
                    ExprType::Equal,
                    vec![
                        InputRef::new(pos_of_flag, DataType::Int64).into(),
                        Literal::new(Some(flag_value.into()), DataType::Int64).into(),
                    ],
                )
                .unwrap();
                agg_call.filter.conjunctions.push(filter_expr.into());
            }
        });

        Agg::new(agg_calls, final_agg_group_keys, mid_agg.into())
            .with_enable_two_phase(enable_two_phase)
            .into()
    }
}