risingwave_frontend/optimizer/rule/translate_apply_rule.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::HashMap;
use risingwave_common::types::DataType;
use risingwave_pb::plan_common::JoinType;
use super::{BoxedRule, Rule};
use crate::expr::{ExprImpl, ExprType, FunctionCall, InputRef};
use crate::optimizer::plan_node::generic::{Agg, GenericPlanRef};
use crate::optimizer::plan_node::{
LogicalApply, LogicalJoin, LogicalProject, LogicalScan, LogicalShare, PlanTreeNodeBinary,
PlanTreeNodeUnary,
};
use crate::optimizer::PlanRef;
use crate::utils::{ColIndexMapping, Condition};
/// General Unnesting based on the paper Unnesting Arbitrary Queries:
/// Translate the apply into a canonical form.
///
/// Before:
///
/// ```text
/// LogicalApply
/// / \
/// LHS RHS
/// ```
///
/// After:
///
/// ```text
/// LogicalJoin
/// / \
/// LHS LogicalApply
/// / \
/// Domain RHS
/// ```
pub struct TranslateApplyRule {
enable_share_plan: bool,
}
impl Rule for TranslateApplyRule {
fn apply(&self, plan: PlanRef) -> Option<PlanRef> {
let apply: &LogicalApply = plan.as_logical_apply()?;
if apply.translated() {
return None;
}
let mut left: PlanRef = apply.left();
let right: PlanRef = apply.right();
let apply_left_len = left.schema().len();
let correlated_indices = apply.correlated_indices();
let mut index_mapping =
ColIndexMapping::new(vec![None; apply_left_len], correlated_indices.len());
let mut data_types = HashMap::new();
let mut index = 0;
// First try to rewrite the left side of the apply.
// TODO: remove the rewrite and always use the general way to calculate the domain
// after we support DAG.
let domain: PlanRef = if let Some(rewritten_left) = Self::rewrite(
&left,
correlated_indices.clone(),
0,
&mut index_mapping,
&mut data_types,
&mut index,
) {
// This `LogicalProject` is used to make sure that after `LogicalApply`'s left was
// rewritten, the new index of `correlated_index` is always at its position in
// `correlated_indices`.
let exprs = correlated_indices
.clone()
.into_iter()
.enumerate()
.map(|(i, correlated_index)| {
let index = index_mapping.map(correlated_index);
let data_type = rewritten_left.schema().fields()[index].data_type.clone();
index_mapping.put(correlated_index, Some(i));
InputRef::new(index, data_type).into()
})
.collect();
let project = LogicalProject::create(rewritten_left, exprs);
let distinct = Agg::new(vec![], (0..project.schema().len()).collect(), project);
distinct.into()
} else {
// The left side of the apply is not SPJ. We need to use the general way to calculate
// the domain. Distinct + Project + The Left of Apply
// Use Share
left = if self.enable_share_plan {
let logical_share = LogicalShare::new(left);
logical_share.into()
} else {
left
};
let exprs = correlated_indices
.clone()
.into_iter()
.map(|correlated_index| {
let data_type = left.schema().fields()[correlated_index].data_type.clone();
InputRef::new(correlated_index, data_type).into()
})
.collect();
let project = LogicalProject::create(left.clone(), exprs);
let distinct = Agg::new(vec![], (0..project.schema().len()).collect(), project);
distinct.into()
};
let eq_predicates = correlated_indices
.into_iter()
.enumerate()
.map(|(i, correlated_index)| {
let shifted_index = i + apply_left_len;
let data_type = domain.schema().fields()[i].data_type.clone();
let left = InputRef::new(correlated_index, data_type.clone());
let right = InputRef::new(shifted_index, data_type);
// use null-safe equal
FunctionCall::new_unchecked(
ExprType::IsNotDistinctFrom,
vec![left.into(), right.into()],
DataType::Boolean,
)
.into()
})
.collect::<Vec<ExprImpl>>();
let new_apply = apply.clone_with_left_right(left, right);
let new_node = new_apply.translate_apply(domain, eq_predicates);
Some(new_node)
}
}
impl TranslateApplyRule {
pub fn create(enable_share_plan: bool) -> BoxedRule {
Box::new(TranslateApplyRule { enable_share_plan })
}
/// Rewrite `LogicalApply`'s left according to `correlated_indices`.
///
/// Assumption: only `LogicalJoin`, `LogicalScan`, `LogicalProject` and `LogicalFilter` are in
/// the left.
fn rewrite(
plan: &PlanRef,
correlated_indices: Vec<usize>,
offset: usize,
index_mapping: &mut ColIndexMapping,
data_types: &mut HashMap<usize, DataType>,
index: &mut usize,
) -> Option<PlanRef> {
if let Some(join) = plan.as_logical_join() {
Self::rewrite_join(
join,
correlated_indices,
offset,
index_mapping,
data_types,
index,
)
} else if let Some(apply) = plan.as_logical_apply() {
Self::rewrite_apply(
apply,
correlated_indices,
offset,
index_mapping,
data_types,
index,
)
} else if let Some(scan) = plan.as_logical_scan() {
Self::rewrite_scan(
scan,
correlated_indices,
offset,
index_mapping,
data_types,
index,
)
} else if let Some(filter) = plan.as_logical_filter() {
Self::rewrite(
&filter.input(),
correlated_indices,
offset,
index_mapping,
data_types,
index,
)
} else {
// TODO: better to return an error.
None
}
}
fn rewrite_join(
join: &LogicalJoin,
required_col_idx: Vec<usize>,
mut offset: usize,
index_mapping: &mut ColIndexMapping,
data_types: &mut HashMap<usize, DataType>,
index: &mut usize,
) -> Option<PlanRef> {
// TODO: Do we need to take the `on` into account?
let left_len = join.left().schema().len();
let (left_idxs, right_idxs): (Vec<_>, Vec<_>) = required_col_idx
.into_iter()
.partition(|idx| *idx < left_len);
let mut rewrite =
|plan: PlanRef, mut indices: Vec<usize>, is_right: bool| -> Option<PlanRef> {
if is_right {
indices.iter_mut().for_each(|index| *index -= left_len);
offset += left_len;
}
Self::rewrite(&plan, indices, offset, index_mapping, data_types, index)
};
match (left_idxs.is_empty(), right_idxs.is_empty()) {
(true, false) => {
// Only accept join which doesn't generate null columns.
match join.join_type() {
JoinType::Inner
| JoinType::LeftSemi
| JoinType::RightSemi
| JoinType::LeftAnti
| JoinType::RightAnti
| JoinType::RightOuter
| JoinType::AsofInner => rewrite(join.right(), right_idxs, true),
JoinType::LeftOuter | JoinType::FullOuter | JoinType::AsofLeftOuter => None,
JoinType::Unspecified => unreachable!(),
}
}
(false, true) => {
// Only accept join which doesn't generate null columns.
match join.join_type() {
JoinType::Inner
| JoinType::LeftSemi
| JoinType::RightSemi
| JoinType::LeftAnti
| JoinType::RightAnti
| JoinType::LeftOuter
| JoinType::AsofInner
| JoinType::AsofLeftOuter => rewrite(join.left(), left_idxs, false),
JoinType::RightOuter | JoinType::FullOuter => None,
JoinType::Unspecified => unreachable!(),
}
}
(false, false) => {
// Only accept join which doesn't generate null columns.
match join.join_type() {
JoinType::Inner
| JoinType::LeftSemi
| JoinType::RightSemi
| JoinType::LeftAnti
| JoinType::RightAnti
| JoinType::AsofInner => {
let left = rewrite(join.left(), left_idxs, false)?;
let right = rewrite(join.right(), right_idxs, true)?;
let new_join =
LogicalJoin::new(left, right, join.join_type(), Condition::true_cond());
Some(new_join.into())
}
JoinType::LeftOuter
| JoinType::RightOuter
| JoinType::FullOuter
| JoinType::AsofLeftOuter => None,
JoinType::Unspecified => unreachable!(),
}
}
_ => None,
}
}
/// ```text
/// LogicalApply
/// / \
/// LogicalApply RHS1
/// / \
/// LHS RHS2
/// ```
///
/// A common structure of multi scalar subqueries is a chain of `LogicalApply`. To avoid exponential growth of the domain operator, we need to rewrite the apply and try to simplify the domain as much as possible.
/// We use a top-down apply order to rewrite the apply, so that we don't need to handle operator like project and aggregation generated by the domain calculation.
/// As a cost, we need to add a flag `translated` to the apply operator to remind `translate_apply_rule` that the apply has been translated.
fn rewrite_apply(
apply: &LogicalApply,
required_col_idx: Vec<usize>,
offset: usize,
index_mapping: &mut ColIndexMapping,
data_types: &mut HashMap<usize, DataType>,
index: &mut usize,
) -> Option<PlanRef> {
// TODO: Do we need to take the `on` into account?
let left_len = apply.left().schema().len();
let (left_idxs, right_idxs): (Vec<_>, Vec<_>) = required_col_idx
.into_iter()
.partition(|idx| *idx < left_len);
if !left_idxs.is_empty() && right_idxs.is_empty() {
// Deal with multi scalar subqueries
match apply.join_type() {
JoinType::Inner
| JoinType::LeftSemi
| JoinType::LeftAnti
| JoinType::LeftOuter
| JoinType::AsofInner
| JoinType::AsofLeftOuter => {
let plan = apply.left();
Self::rewrite(&plan, left_idxs, offset, index_mapping, data_types, index)
}
JoinType::RightOuter
| JoinType::RightAnti
| JoinType::RightSemi
| JoinType::FullOuter => None,
JoinType::Unspecified => unreachable!(),
}
} else {
None
}
}
fn rewrite_scan(
scan: &LogicalScan,
required_col_idx: Vec<usize>,
offset: usize,
index_mapping: &mut ColIndexMapping,
data_types: &mut HashMap<usize, DataType>,
index: &mut usize,
) -> Option<PlanRef> {
for i in &required_col_idx {
let correlated_index = *i + offset;
index_mapping.put(correlated_index, Some(*index));
data_types.insert(
correlated_index,
scan.schema().fields()[*i].data_type.clone(),
);
*index += 1;
}
Some(scan.clone_with_output_indices(required_col_idx).into())
}
}