1use std::cmp::min;
16use std::collections::{HashMap, HashSet};
17use std::fmt::{Debug, Formatter};
18use std::num::NonZeroU64;
19use std::sync::Arc;
20
21use anyhow::anyhow;
22use async_recursion::async_recursion;
23use enum_as_inner::EnumAsInner;
24use futures::TryStreamExt;
25use iceberg::expr::Predicate as IcebergPredicate;
26use itertools::Itertools;
27use petgraph::{Directed, Graph};
28use pgwire::pg_server::SessionId;
29use risingwave_batch::error::BatchError;
30use risingwave_batch::worker_manager::worker_node_manager::WorkerNodeSelector;
31use risingwave_common::bitmap::{Bitmap, BitmapBuilder};
32use risingwave_common::catalog::Schema;
33use risingwave_common::hash::table_distribution::TableDistribution;
34use risingwave_common::hash::{WorkerSlotId, WorkerSlotMapping};
35use risingwave_common::util::scan_range::ScanRange;
36use risingwave_connector::source::filesystem::opendal_source::opendal_enumerator::OpendalEnumerator;
37use risingwave_connector::source::filesystem::opendal_source::{
38 BatchPosixFsEnumerator, OpendalAzblob, OpendalGcs, OpendalS3,
39};
40use risingwave_connector::source::iceberg::IcebergSplitEnumerator;
41use risingwave_connector::source::kafka::KafkaSplitEnumerator;
42use risingwave_connector::source::prelude::DatagenSplitEnumerator;
43use risingwave_connector::source::reader::reader::build_opendal_fs_list_for_batch;
44use risingwave_connector::source::{
45 ConnectorProperties, SourceEnumeratorContext, SplitEnumerator, SplitImpl,
46};
47use risingwave_pb::batch_plan::iceberg_scan_node::IcebergScanType;
48use risingwave_pb::batch_plan::plan_node::NodeBody;
49use risingwave_pb::batch_plan::{ExchangeInfo, ScanRange as ScanRangeProto};
50use risingwave_pb::plan_common::Field as PbField;
51use risingwave_sqlparser::ast::AsOf;
52use serde::Serialize;
53use serde::ser::SerializeStruct;
54use uuid::Uuid;
55
56use super::SchedulerError;
57use crate::TableCatalog;
58use crate::catalog::TableId;
59use crate::catalog::catalog_service::CatalogReader;
60use crate::optimizer::plan_node::generic::{GenericPlanRef, PhysicalPlanRef};
61use crate::optimizer::plan_node::utils::to_iceberg_time_travel_as_of;
62use crate::optimizer::plan_node::{
63 BatchIcebergScan, BatchKafkaScan, BatchPlanNodeType, BatchPlanRef as PlanRef, BatchSource,
64 PlanNodeId,
65};
66use crate::optimizer::property::Distribution;
67use crate::scheduler::SchedulerResult;
68
69#[derive(Clone, Debug, Hash, Eq, PartialEq)]
70pub struct QueryId {
71 pub id: String,
72}
73
74impl std::fmt::Display for QueryId {
75 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
76 write!(f, "QueryId:{}", self.id)
77 }
78}
79
80pub type StageId = u32;
81
82pub const ROOT_TASK_ID: u64 = 0;
84pub const ROOT_TASK_OUTPUT_ID: u64 = 0;
86pub type TaskId = u64;
87
88#[derive(Clone, Debug)]
90pub struct ExecutionPlanNode {
91 pub plan_node_id: PlanNodeId,
92 pub plan_node_type: BatchPlanNodeType,
93 pub node: NodeBody,
94 pub schema: Vec<PbField>,
95
96 pub children: Vec<Arc<ExecutionPlanNode>>,
97
98 pub source_stage_id: Option<StageId>,
103}
104
105impl Serialize for ExecutionPlanNode {
106 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
107 where
108 S: serde::Serializer,
109 {
110 let mut state = serializer.serialize_struct("QueryStage", 5)?;
111 state.serialize_field("plan_node_id", &self.plan_node_id)?;
112 state.serialize_field("plan_node_type", &self.plan_node_type)?;
113 state.serialize_field("schema", &self.schema)?;
114 state.serialize_field("children", &self.children)?;
115 state.serialize_field("source_stage_id", &self.source_stage_id)?;
116 state.end()
117 }
118}
119
120impl TryFrom<PlanRef> for ExecutionPlanNode {
121 type Error = SchedulerError;
122
123 fn try_from(plan_node: PlanRef) -> Result<Self, Self::Error> {
124 Ok(Self {
125 plan_node_id: plan_node.plan_base().id(),
126 plan_node_type: plan_node.node_type(),
127 node: plan_node.try_to_batch_prost_body()?,
128 children: vec![],
129 schema: plan_node.schema().to_prost(),
130 source_stage_id: None,
131 })
132 }
133}
134
135impl ExecutionPlanNode {
136 pub fn node_type(&self) -> BatchPlanNodeType {
137 self.plan_node_type
138 }
139}
140
141pub struct BatchPlanFragmenter {
143 query_id: QueryId,
144 next_stage_id: StageId,
145 worker_node_manager: WorkerNodeSelector,
146 catalog_reader: CatalogReader,
147
148 batch_parallelism: usize,
149 timezone: String,
150
151 stage_graph_builder: Option<StageGraphBuilder>,
152 stage_graph: Option<StageGraph>,
153}
154
155impl Default for QueryId {
156 fn default() -> Self {
157 Self {
158 id: Uuid::new_v4().to_string(),
159 }
160 }
161}
162
163impl BatchPlanFragmenter {
164 pub fn new(
165 worker_node_manager: WorkerNodeSelector,
166 catalog_reader: CatalogReader,
167 batch_parallelism: Option<NonZeroU64>,
168 timezone: String,
169 batch_node: PlanRef,
170 ) -> SchedulerResult<Self> {
171 let batch_parallelism = if let Some(num) = batch_parallelism {
176 min(
178 num.get() as usize,
179 worker_node_manager.schedule_unit_count(),
180 )
181 } else {
182 worker_node_manager.schedule_unit_count()
184 };
185
186 let mut plan_fragmenter = Self {
187 query_id: Default::default(),
188 next_stage_id: 0,
189 worker_node_manager,
190 catalog_reader,
191 batch_parallelism,
192 timezone,
193 stage_graph_builder: Some(StageGraphBuilder::new(batch_parallelism)),
194 stage_graph: None,
195 };
196 plan_fragmenter.split_into_stage(batch_node)?;
197 Ok(plan_fragmenter)
198 }
199
200 fn split_into_stage(&mut self, batch_node: PlanRef) -> SchedulerResult<()> {
202 let root_stage = self.new_stage(
203 batch_node,
204 Some(Distribution::Single.to_prost(
205 1,
206 &self.catalog_reader,
207 &self.worker_node_manager,
208 )?),
209 )?;
210 self.stage_graph = Some(
211 self.stage_graph_builder
212 .take()
213 .unwrap()
214 .build(root_stage.id),
215 );
216 Ok(())
217 }
218}
219
220#[derive(Debug)]
222#[cfg_attr(test, derive(Clone))]
223pub struct Query {
224 pub query_id: QueryId,
226 pub stage_graph: StageGraph,
227}
228
229impl Query {
230 pub fn leaf_stages(&self) -> Vec<StageId> {
231 let mut ret_leaf_stages = Vec::new();
232 for stage_id in self.stage_graph.stages.keys() {
233 if self
234 .stage_graph
235 .get_child_stages_unchecked(stage_id)
236 .is_empty()
237 {
238 ret_leaf_stages.push(*stage_id);
239 }
240 }
241 ret_leaf_stages
242 }
243
244 pub fn get_parents(&self, stage_id: &StageId) -> &HashSet<StageId> {
245 self.stage_graph.parent_edges.get(stage_id).unwrap()
246 }
247
248 pub fn root_stage_id(&self) -> StageId {
249 self.stage_graph.root_stage_id
250 }
251
252 pub fn query_id(&self) -> &QueryId {
253 &self.query_id
254 }
255
256 pub fn stages_with_table_scan(&self) -> HashSet<StageId> {
257 self.stage_graph
258 .stages
259 .iter()
260 .filter_map(|(stage_id, stage_query)| {
261 if stage_query.has_table_scan() {
262 Some(*stage_id)
263 } else {
264 None
265 }
266 })
267 .collect()
268 }
269
270 pub fn has_lookup_join_stage(&self) -> bool {
271 self.stage_graph
272 .stages
273 .iter()
274 .any(|(_stage_id, stage_query)| stage_query.has_lookup_join())
275 }
276}
277
278#[derive(Debug, Clone)]
279pub enum SourceFetchParameters {
280 IcebergSpecificInfo(IcebergSpecificInfo),
281 KafkaTimebound {
282 lower: Option<i64>,
283 upper: Option<i64>,
284 },
285 Empty,
286}
287
288#[derive(Debug, Clone)]
289pub struct SourceFetchInfo {
290 pub schema: Schema,
291 pub connector: ConnectorProperties,
294 pub fetch_parameters: SourceFetchParameters,
297 pub as_of: Option<AsOf>,
298}
299
300#[derive(Debug, Clone)]
301pub struct IcebergSpecificInfo {
302 pub iceberg_scan_type: IcebergScanType,
303 pub predicate: IcebergPredicate,
304}
305
306#[derive(Clone, Debug)]
307pub enum SourceScanInfo {
308 Incomplete(SourceFetchInfo),
310 Complete(Vec<SplitImpl>),
311}
312
313impl SourceScanInfo {
314 pub fn new(fetch_info: SourceFetchInfo) -> Self {
315 Self::Incomplete(fetch_info)
316 }
317
318 pub async fn complete(
319 self,
320 batch_parallelism: usize,
321 timezone: String,
322 ) -> SchedulerResult<Self> {
323 let fetch_info = match self {
324 SourceScanInfo::Incomplete(fetch_info) => fetch_info,
325 SourceScanInfo::Complete(_) => {
326 unreachable!("Never call complete when SourceScanInfo is already complete")
327 }
328 };
329 match (fetch_info.connector, fetch_info.fetch_parameters) {
330 (
331 ConnectorProperties::Kafka(prop),
332 SourceFetchParameters::KafkaTimebound { lower, upper },
333 ) => {
334 let mut kafka_enumerator =
335 KafkaSplitEnumerator::new(*prop, SourceEnumeratorContext::dummy().into())
336 .await?;
337 let split_info = kafka_enumerator
338 .list_splits_batch(lower, upper)
339 .await?
340 .into_iter()
341 .map(SplitImpl::Kafka)
342 .collect_vec();
343
344 Ok(SourceScanInfo::Complete(split_info))
345 }
346 (ConnectorProperties::Datagen(prop), SourceFetchParameters::Empty) => {
347 let mut datagen_enumerator =
348 DatagenSplitEnumerator::new(*prop, SourceEnumeratorContext::dummy().into())
349 .await?;
350 let split_info = datagen_enumerator.list_splits().await?;
351 let res = split_info.into_iter().map(SplitImpl::Datagen).collect_vec();
352
353 Ok(SourceScanInfo::Complete(res))
354 }
355 (ConnectorProperties::OpendalS3(prop), SourceFetchParameters::Empty) => {
356 let lister: OpendalEnumerator<OpendalS3> = OpendalEnumerator::new_s3_source(
357 &prop.s3_properties,
358 prop.assume_role,
359 prop.fs_common.compression_format,
360 )?;
361 let stream = build_opendal_fs_list_for_batch(lister);
362
363 let batch_res: Vec<_> = stream.try_collect().await?;
364 let res = batch_res
365 .into_iter()
366 .map(SplitImpl::OpendalS3)
367 .collect_vec();
368
369 Ok(SourceScanInfo::Complete(res))
370 }
371 (ConnectorProperties::Gcs(prop), SourceFetchParameters::Empty) => {
372 let lister: OpendalEnumerator<OpendalGcs> =
373 OpendalEnumerator::new_gcs_source(*prop)?;
374 let stream = build_opendal_fs_list_for_batch(lister);
375 let batch_res: Vec<_> = stream.try_collect().await?;
376 let res = batch_res.into_iter().map(SplitImpl::Gcs).collect_vec();
377
378 Ok(SourceScanInfo::Complete(res))
379 }
380 (ConnectorProperties::Azblob(prop), SourceFetchParameters::Empty) => {
381 let lister: OpendalEnumerator<OpendalAzblob> =
382 OpendalEnumerator::new_azblob_source(*prop)?;
383 let stream = build_opendal_fs_list_for_batch(lister);
384 let batch_res: Vec<_> = stream.try_collect().await?;
385 let res = batch_res.into_iter().map(SplitImpl::Azblob).collect_vec();
386
387 Ok(SourceScanInfo::Complete(res))
388 }
389 (ConnectorProperties::BatchPosixFs(prop), SourceFetchParameters::Empty) => {
390 use risingwave_connector::source::SplitEnumerator;
391 let mut enumerator = BatchPosixFsEnumerator::new(
392 *prop,
393 risingwave_connector::source::SourceEnumeratorContext::dummy().into(),
394 )
395 .await?;
396 let splits = enumerator.list_splits().await?;
397 let res = splits
398 .into_iter()
399 .map(SplitImpl::BatchPosixFs)
400 .collect_vec();
401
402 Ok(SourceScanInfo::Complete(res))
403 }
404 (
405 ConnectorProperties::Iceberg(prop),
406 SourceFetchParameters::IcebergSpecificInfo(iceberg_specific_info),
407 ) => {
408 let iceberg_enumerator =
409 IcebergSplitEnumerator::new(*prop, SourceEnumeratorContext::dummy().into())
410 .await?;
411
412 let time_travel_info = to_iceberg_time_travel_as_of(&fetch_info.as_of, &timezone)?;
413
414 let split_info = iceberg_enumerator
415 .list_splits_batch(
416 fetch_info.schema,
417 time_travel_info,
418 batch_parallelism,
419 iceberg_specific_info.iceberg_scan_type,
420 iceberg_specific_info.predicate,
421 )
422 .await?
423 .into_iter()
424 .map(SplitImpl::Iceberg)
425 .collect_vec();
426
427 Ok(SourceScanInfo::Complete(split_info))
428 }
429 (connector, _) => Err(SchedulerError::Internal(anyhow!(
430 "Unsupported to query directly from this {} source, \
431 please create a table or streaming job from it",
432 connector.kind()
433 ))),
434 }
435 }
436
437 pub fn split_info(&self) -> SchedulerResult<&Vec<SplitImpl>> {
438 match self {
439 Self::Incomplete(_) => Err(SchedulerError::Internal(anyhow!(
440 "Should not get split info from incomplete source scan info"
441 ))),
442 Self::Complete(split_info) => Ok(split_info),
443 }
444 }
445}
446
447#[derive(Clone, Debug)]
448pub struct TableScanInfo {
449 name: String,
451
452 partitions: Option<HashMap<WorkerSlotId, TablePartitionInfo>>,
460}
461
462impl TableScanInfo {
463 pub fn new(name: String, partitions: HashMap<WorkerSlotId, TablePartitionInfo>) -> Self {
465 Self {
466 name,
467 partitions: Some(partitions),
468 }
469 }
470
471 pub fn system_table(name: String) -> Self {
473 Self {
474 name,
475 partitions: None,
476 }
477 }
478
479 pub fn name(&self) -> &str {
480 self.name.as_ref()
481 }
482
483 pub fn partitions(&self) -> Option<&HashMap<WorkerSlotId, TablePartitionInfo>> {
484 self.partitions.as_ref()
485 }
486}
487
488#[derive(Clone, Debug)]
489pub struct TablePartitionInfo {
490 pub vnode_bitmap: Bitmap,
491 pub scan_ranges: Vec<ScanRangeProto>,
492}
493
494#[derive(Clone, Debug, EnumAsInner)]
495pub enum PartitionInfo {
496 Table(TablePartitionInfo),
497 Source(Vec<SplitImpl>),
498 File(Vec<String>),
499}
500
501#[derive(Clone, Debug)]
502pub struct FileScanInfo {
503 pub file_location: Vec<String>,
504}
505
506#[derive(Clone)]
508pub struct QueryStage {
509 pub query_id: QueryId,
510 pub id: StageId,
511 pub root: Arc<ExecutionPlanNode>,
512 pub exchange_info: Option<ExchangeInfo>,
513 pub parallelism: Option<u32>,
514 pub table_scan_info: Option<TableScanInfo>,
516 pub source_info: Option<SourceScanInfo>,
517 pub file_scan_info: Option<FileScanInfo>,
518 pub has_lookup_join: bool,
519 pub dml_table_id: Option<TableId>,
520 pub session_id: SessionId,
521 pub batch_enable_distributed_dml: bool,
522
523 children_exchange_distribution: Option<HashMap<StageId, Distribution>>,
525}
526
527impl QueryStage {
528 pub fn has_table_scan(&self) -> bool {
532 self.table_scan_info.is_some()
533 }
534
535 pub fn has_lookup_join(&self) -> bool {
538 self.has_lookup_join
539 }
540
541 pub fn clone_with_exchange_info(
542 &self,
543 exchange_info: Option<ExchangeInfo>,
544 parallelism: Option<u32>,
545 ) -> Self {
546 if let Some(exchange_info) = exchange_info {
547 return Self {
548 query_id: self.query_id.clone(),
549 id: self.id,
550 root: self.root.clone(),
551 exchange_info: Some(exchange_info),
552 parallelism,
553 table_scan_info: self.table_scan_info.clone(),
554 source_info: self.source_info.clone(),
555 file_scan_info: self.file_scan_info.clone(),
556 has_lookup_join: self.has_lookup_join,
557 dml_table_id: self.dml_table_id,
558 session_id: self.session_id,
559 batch_enable_distributed_dml: self.batch_enable_distributed_dml,
560 children_exchange_distribution: self.children_exchange_distribution.clone(),
561 };
562 }
563 self.clone()
564 }
565
566 pub fn clone_with_exchange_info_and_complete_source_info(
567 &self,
568 exchange_info: Option<ExchangeInfo>,
569 source_info: SourceScanInfo,
570 task_parallelism: u32,
571 ) -> Self {
572 assert!(matches!(source_info, SourceScanInfo::Complete(_)));
573 let exchange_info = if let Some(exchange_info) = exchange_info {
574 Some(exchange_info)
575 } else {
576 self.exchange_info.clone()
577 };
578 Self {
579 query_id: self.query_id.clone(),
580 id: self.id,
581 root: self.root.clone(),
582 exchange_info,
583 parallelism: Some(task_parallelism),
584 table_scan_info: self.table_scan_info.clone(),
585 source_info: Some(source_info),
586 file_scan_info: self.file_scan_info.clone(),
587 has_lookup_join: self.has_lookup_join,
588 dml_table_id: self.dml_table_id,
589 session_id: self.session_id,
590 batch_enable_distributed_dml: self.batch_enable_distributed_dml,
591 children_exchange_distribution: None,
592 }
593 }
594}
595
596impl Debug for QueryStage {
597 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
598 f.debug_struct("QueryStage")
599 .field("id", &self.id)
600 .field("parallelism", &self.parallelism)
601 .field("exchange_info", &self.exchange_info)
602 .field("has_table_scan", &self.has_table_scan())
603 .finish()
604 }
605}
606
607impl Serialize for QueryStage {
608 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
609 where
610 S: serde::Serializer,
611 {
612 let mut state = serializer.serialize_struct("QueryStage", 3)?;
613 state.serialize_field("root", &self.root)?;
614 state.serialize_field("parallelism", &self.parallelism)?;
615 state.serialize_field("exchange_info", &self.exchange_info)?;
616 state.end()
617 }
618}
619
620pub type QueryStageRef = Arc<QueryStage>;
621
622struct QueryStageBuilder {
623 query_id: QueryId,
624 id: StageId,
625 root: Option<Arc<ExecutionPlanNode>>,
626 parallelism: Option<u32>,
627 exchange_info: Option<ExchangeInfo>,
628
629 children_stages: Vec<QueryStageRef>,
630 table_scan_info: Option<TableScanInfo>,
632 source_info: Option<SourceScanInfo>,
633 file_scan_file: Option<FileScanInfo>,
634 has_lookup_join: bool,
635 dml_table_id: Option<TableId>,
636 session_id: SessionId,
637 batch_enable_distributed_dml: bool,
638
639 children_exchange_distribution: HashMap<StageId, Distribution>,
640}
641
642impl QueryStageBuilder {
643 #[allow(clippy::too_many_arguments)]
644 fn new(
645 id: StageId,
646 query_id: QueryId,
647 parallelism: Option<u32>,
648 exchange_info: Option<ExchangeInfo>,
649 table_scan_info: Option<TableScanInfo>,
650 source_info: Option<SourceScanInfo>,
651 file_scan_file: Option<FileScanInfo>,
652 has_lookup_join: bool,
653 dml_table_id: Option<TableId>,
654 session_id: SessionId,
655 batch_enable_distributed_dml: bool,
656 ) -> Self {
657 Self {
658 query_id,
659 id,
660 root: None,
661 parallelism,
662 exchange_info,
663 children_stages: vec![],
664 table_scan_info,
665 source_info,
666 file_scan_file,
667 has_lookup_join,
668 dml_table_id,
669 session_id,
670 batch_enable_distributed_dml,
671 children_exchange_distribution: HashMap::new(),
672 }
673 }
674
675 fn finish(self, stage_graph_builder: &mut StageGraphBuilder) -> QueryStageRef {
676 let children_exchange_distribution = if self.parallelism.is_none() {
677 Some(self.children_exchange_distribution)
678 } else {
679 None
680 };
681 let stage = Arc::new(QueryStage {
682 query_id: self.query_id,
683 id: self.id,
684 root: self.root.unwrap(),
685 exchange_info: self.exchange_info,
686 parallelism: self.parallelism,
687 table_scan_info: self.table_scan_info,
688 source_info: self.source_info,
689 file_scan_info: self.file_scan_file,
690 has_lookup_join: self.has_lookup_join,
691 dml_table_id: self.dml_table_id,
692 session_id: self.session_id,
693 batch_enable_distributed_dml: self.batch_enable_distributed_dml,
694 children_exchange_distribution,
695 });
696
697 stage_graph_builder.add_node(stage.clone());
698 for child_stage in self.children_stages {
699 stage_graph_builder.link_to_child(self.id, child_stage.id);
700 }
701 stage
702 }
703}
704
705#[derive(Debug, Serialize)]
707#[cfg_attr(test, derive(Clone))]
708pub struct StageGraph {
709 pub root_stage_id: StageId,
710 pub stages: HashMap<StageId, QueryStageRef>,
711 child_edges: HashMap<StageId, HashSet<StageId>>,
713 parent_edges: HashMap<StageId, HashSet<StageId>>,
715
716 batch_parallelism: usize,
717}
718
719impl StageGraph {
720 pub fn get_child_stages_unchecked(&self, stage_id: &StageId) -> &HashSet<StageId> {
721 self.child_edges.get(stage_id).unwrap()
722 }
723
724 pub fn get_child_stages(&self, stage_id: &StageId) -> Option<&HashSet<StageId>> {
725 self.child_edges.get(stage_id)
726 }
727
728 pub fn stage_ids_by_topo_order(&self) -> impl Iterator<Item = StageId> {
730 let mut stack = Vec::with_capacity(self.stages.len());
731 stack.push(self.root_stage_id);
732 let mut ret = Vec::with_capacity(self.stages.len());
733 let mut existing = HashSet::with_capacity(self.stages.len());
734
735 while let Some(s) = stack.pop() {
736 if !existing.contains(&s) {
737 ret.push(s);
738 existing.insert(s);
739 stack.extend(&self.child_edges[&s]);
740 }
741 }
742
743 ret.into_iter().rev()
744 }
745
746 async fn complete(
747 self,
748 catalog_reader: &CatalogReader,
749 worker_node_manager: &WorkerNodeSelector,
750 timezone: String,
751 ) -> SchedulerResult<StageGraph> {
752 let mut complete_stages = HashMap::new();
753 self.complete_stage(
754 self.stages.get(&self.root_stage_id).unwrap().clone(),
755 None,
756 &mut complete_stages,
757 catalog_reader,
758 worker_node_manager,
759 timezone,
760 )
761 .await?;
762 Ok(StageGraph {
763 root_stage_id: self.root_stage_id,
764 stages: complete_stages,
765 child_edges: self.child_edges,
766 parent_edges: self.parent_edges,
767 batch_parallelism: self.batch_parallelism,
768 })
769 }
770
771 #[async_recursion]
772 async fn complete_stage(
773 &self,
774 stage: QueryStageRef,
775 exchange_info: Option<ExchangeInfo>,
776 complete_stages: &mut HashMap<StageId, QueryStageRef>,
777 catalog_reader: &CatalogReader,
778 worker_node_manager: &WorkerNodeSelector,
779 timezone: String,
780 ) -> SchedulerResult<()> {
781 let parallelism = if stage.parallelism.is_some() {
782 complete_stages.insert(
784 stage.id,
785 Arc::new(stage.clone_with_exchange_info(exchange_info, stage.parallelism)),
786 );
787 None
788 } else if matches!(stage.source_info, Some(SourceScanInfo::Incomplete(_))) {
789 let complete_source_info = stage
790 .source_info
791 .as_ref()
792 .unwrap()
793 .clone()
794 .complete(self.batch_parallelism, timezone.to_owned())
795 .await?;
796
797 let task_parallelism = match &stage.source_info {
805 Some(SourceScanInfo::Incomplete(source_fetch_info)) => {
806 match source_fetch_info.connector {
807 ConnectorProperties::Gcs(_)
808 | ConnectorProperties::OpendalS3(_)
809 | ConnectorProperties::Azblob(_) => (min(
810 complete_source_info.split_info().unwrap().len() as u32,
811 (self.batch_parallelism / 2) as u32,
812 ))
813 .max(1),
814 _ => complete_source_info.split_info().unwrap().len() as u32,
815 }
816 }
817 _ => unreachable!(),
818 };
819 let complete_stage = Arc::new(stage.clone_with_exchange_info_and_complete_source_info(
822 exchange_info,
823 complete_source_info,
824 task_parallelism,
825 ));
826 let parallelism = complete_stage.parallelism;
827 complete_stages.insert(stage.id, complete_stage);
828 parallelism
829 } else {
830 assert!(stage.file_scan_info.is_some());
831 let parallelism = min(
832 self.batch_parallelism / 2,
833 stage.file_scan_info.as_ref().unwrap().file_location.len(),
834 );
835 complete_stages.insert(
836 stage.id,
837 Arc::new(stage.clone_with_exchange_info(exchange_info, Some(parallelism as u32))),
838 );
839 None
840 };
841
842 for child_stage_id in self.child_edges.get(&stage.id).unwrap_or(&HashSet::new()) {
843 let exchange_info = if let Some(parallelism) = parallelism {
844 let exchange_distribution = stage
845 .children_exchange_distribution
846 .as_ref()
847 .unwrap()
848 .get(child_stage_id)
849 .expect("Exchange distribution is not consistent with the stage graph");
850 Some(exchange_distribution.to_prost(
851 parallelism,
852 catalog_reader,
853 worker_node_manager,
854 )?)
855 } else {
856 None
857 };
858 self.complete_stage(
859 self.stages.get(child_stage_id).unwrap().clone(),
860 exchange_info,
861 complete_stages,
862 catalog_reader,
863 worker_node_manager,
864 timezone.to_owned(),
865 )
866 .await?;
867 }
868
869 Ok(())
870 }
871
872 pub fn to_petgraph(&self) -> Graph<String, String, Directed> {
874 let mut graph = Graph::<String, String, Directed>::new();
875
876 let mut node_indices = HashMap::new();
877
878 for (&stage_id, stage_ref) in self.stages.iter().sorted_by_key(|(id, _)| **id) {
880 let node_label = format!("Stage {}: {:?}", stage_id, stage_ref);
881 let node_index = graph.add_node(node_label);
882 node_indices.insert(stage_id, node_index);
883 }
884
885 for (&parent_id, children) in &self.child_edges {
887 if let Some(&parent_index) = node_indices.get(&parent_id) {
888 for &child_id in children {
889 if let Some(&child_index) = node_indices.get(&child_id) {
890 graph.add_edge(parent_index, child_index, "".to_owned());
892 }
893 }
894 }
895 }
896
897 graph
898 }
899}
900
901struct StageGraphBuilder {
902 stages: HashMap<StageId, QueryStageRef>,
903 child_edges: HashMap<StageId, HashSet<StageId>>,
904 parent_edges: HashMap<StageId, HashSet<StageId>>,
905 batch_parallelism: usize,
906}
907
908impl StageGraphBuilder {
909 pub fn new(batch_parallelism: usize) -> Self {
910 Self {
911 stages: HashMap::new(),
912 child_edges: HashMap::new(),
913 parent_edges: HashMap::new(),
914 batch_parallelism,
915 }
916 }
917
918 pub fn build(self, root_stage_id: StageId) -> StageGraph {
919 StageGraph {
920 root_stage_id,
921 stages: self.stages,
922 child_edges: self.child_edges,
923 parent_edges: self.parent_edges,
924 batch_parallelism: self.batch_parallelism,
925 }
926 }
927
928 pub fn link_to_child(&mut self, parent_id: StageId, child_id: StageId) {
931 self.child_edges
932 .get_mut(&parent_id)
933 .unwrap()
934 .insert(child_id);
935 self.parent_edges
936 .get_mut(&child_id)
937 .unwrap()
938 .insert(parent_id);
939 }
940
941 pub fn add_node(&mut self, stage: QueryStageRef) {
942 self.child_edges.insert(stage.id, HashSet::new());
944 self.parent_edges.insert(stage.id, HashSet::new());
945 self.stages.insert(stage.id, stage);
946 }
947}
948
949impl BatchPlanFragmenter {
950 pub async fn generate_complete_query(self) -> SchedulerResult<Query> {
956 let stage_graph = self.stage_graph.unwrap();
957 let new_stage_graph = stage_graph
958 .complete(
959 &self.catalog_reader,
960 &self.worker_node_manager,
961 self.timezone.to_owned(),
962 )
963 .await?;
964 Ok(Query {
965 query_id: self.query_id,
966 stage_graph: new_stage_graph,
967 })
968 }
969
970 fn new_stage(
971 &mut self,
972 root: PlanRef,
973 exchange_info: Option<ExchangeInfo>,
974 ) -> SchedulerResult<QueryStageRef> {
975 let next_stage_id = self.next_stage_id;
976 self.next_stage_id += 1;
977
978 let mut table_scan_info = self.collect_stage_table_scan(root.clone())?;
979 let source_info = if table_scan_info.is_none() {
982 Self::collect_stage_source(root.clone())?
983 } else {
984 None
985 };
986
987 let file_scan_info = if table_scan_info.is_none() && source_info.is_none() {
988 Self::collect_stage_file_scan(root.clone())?
989 } else {
990 None
991 };
992
993 let mut has_lookup_join = false;
994 let parallelism = match root.distribution() {
995 Distribution::Single => {
996 if let Some(info) = &mut table_scan_info {
997 if let Some(partitions) = &mut info.partitions {
998 if partitions.len() != 1 {
999 tracing::warn!(
1002 "The stage has single distribution, but contains a scan of table `{}` with {} partitions. A single random worker will be assigned",
1003 info.name,
1004 partitions.len()
1005 );
1006
1007 *partitions = partitions
1008 .drain()
1009 .take(1)
1010 .update(|(_, info)| {
1011 info.vnode_bitmap = Bitmap::ones(info.vnode_bitmap.len());
1012 })
1013 .collect();
1014 }
1015 } else {
1016 }
1018 } else if source_info.is_some() {
1019 return Err(SchedulerError::Internal(anyhow!(
1020 "The stage has single distribution, but contains a source operator"
1021 )));
1022 }
1023 1
1024 }
1025 _ => {
1026 if let Some(table_scan_info) = &table_scan_info {
1027 table_scan_info
1028 .partitions
1029 .as_ref()
1030 .map(|m| m.len())
1031 .unwrap_or(1)
1032 } else if let Some(lookup_join_parallelism) =
1033 self.collect_stage_lookup_join_parallelism(root.clone())?
1034 {
1035 has_lookup_join = true;
1036 lookup_join_parallelism
1037 } else if source_info.is_some() {
1038 0
1039 } else if file_scan_info.is_some() {
1040 1
1041 } else {
1042 self.batch_parallelism
1043 }
1044 }
1045 };
1046 if source_info.is_none() && file_scan_info.is_none() && parallelism == 0 {
1047 return Err(BatchError::EmptyWorkerNodes.into());
1048 }
1049 let parallelism = if parallelism == 0 {
1050 None
1051 } else {
1052 Some(parallelism as u32)
1053 };
1054 let dml_table_id = Self::collect_dml_table_id(&root);
1055 let mut builder = QueryStageBuilder::new(
1056 next_stage_id,
1057 self.query_id.clone(),
1058 parallelism,
1059 exchange_info,
1060 table_scan_info,
1061 source_info,
1062 file_scan_info,
1063 has_lookup_join,
1064 dml_table_id,
1065 root.ctx().session_ctx().session_id(),
1066 root.ctx()
1067 .session_ctx()
1068 .config()
1069 .batch_enable_distributed_dml(),
1070 );
1071
1072 self.visit_node(root, &mut builder, None)?;
1073
1074 Ok(builder.finish(self.stage_graph_builder.as_mut().unwrap()))
1075 }
1076
1077 fn visit_node(
1078 &mut self,
1079 node: PlanRef,
1080 builder: &mut QueryStageBuilder,
1081 parent_exec_node: Option<&mut ExecutionPlanNode>,
1082 ) -> SchedulerResult<()> {
1083 match node.node_type() {
1084 BatchPlanNodeType::BatchExchange => {
1085 self.visit_exchange(node.clone(), builder, parent_exec_node)?;
1086 }
1087 _ => {
1088 let mut execution_plan_node = ExecutionPlanNode::try_from(node.clone())?;
1089
1090 for child in node.inputs() {
1091 self.visit_node(child, builder, Some(&mut execution_plan_node))?;
1092 }
1093
1094 if let Some(parent) = parent_exec_node {
1095 parent.children.push(Arc::new(execution_plan_node));
1096 } else {
1097 builder.root = Some(Arc::new(execution_plan_node));
1098 }
1099 }
1100 }
1101 Ok(())
1102 }
1103
1104 fn visit_exchange(
1105 &mut self,
1106 node: PlanRef,
1107 builder: &mut QueryStageBuilder,
1108 parent_exec_node: Option<&mut ExecutionPlanNode>,
1109 ) -> SchedulerResult<()> {
1110 let mut execution_plan_node = ExecutionPlanNode::try_from(node.clone())?;
1111 let child_exchange_info = if let Some(parallelism) = builder.parallelism {
1112 Some(node.distribution().to_prost(
1113 parallelism,
1114 &self.catalog_reader,
1115 &self.worker_node_manager,
1116 )?)
1117 } else {
1118 None
1119 };
1120 let child_stage = self.new_stage(node.inputs()[0].clone(), child_exchange_info)?;
1121 execution_plan_node.source_stage_id = Some(child_stage.id);
1122 if builder.parallelism.is_none() {
1123 builder
1124 .children_exchange_distribution
1125 .insert(child_stage.id, node.distribution().clone());
1126 }
1127
1128 if let Some(parent) = parent_exec_node {
1129 parent.children.push(Arc::new(execution_plan_node));
1130 } else {
1131 builder.root = Some(Arc::new(execution_plan_node));
1132 }
1133
1134 builder.children_stages.push(child_stage);
1135 Ok(())
1136 }
1137
1138 fn collect_stage_source(node: PlanRef) -> SchedulerResult<Option<SourceScanInfo>> {
1143 if node.node_type() == BatchPlanNodeType::BatchExchange {
1144 return Ok(None);
1146 }
1147
1148 if let Some(batch_kafka_node) = node.as_batch_kafka_scan() {
1149 let batch_kafka_scan: &BatchKafkaScan = batch_kafka_node;
1150 let source_catalog = batch_kafka_scan.source_catalog();
1151 if let Some(source_catalog) = source_catalog {
1152 let property =
1153 ConnectorProperties::extract(source_catalog.with_properties.clone(), false)?;
1154 let timestamp_bound = batch_kafka_scan.kafka_timestamp_range_value();
1155 return Ok(Some(SourceScanInfo::new(SourceFetchInfo {
1156 schema: batch_kafka_scan.base.schema().clone(),
1157 connector: property,
1158 fetch_parameters: SourceFetchParameters::KafkaTimebound {
1159 lower: timestamp_bound.0,
1160 upper: timestamp_bound.1,
1161 },
1162 as_of: None,
1163 })));
1164 }
1165 } else if let Some(batch_iceberg_scan) = node.as_batch_iceberg_scan() {
1166 let batch_iceberg_scan: &BatchIcebergScan = batch_iceberg_scan;
1167 let source_catalog = batch_iceberg_scan.source_catalog();
1168 if let Some(source_catalog) = source_catalog {
1169 let property =
1170 ConnectorProperties::extract(source_catalog.with_properties.clone(), false)?;
1171 let as_of = batch_iceberg_scan.as_of();
1172 return Ok(Some(SourceScanInfo::new(SourceFetchInfo {
1173 schema: batch_iceberg_scan.base.schema().clone(),
1174 connector: property,
1175 fetch_parameters: SourceFetchParameters::IcebergSpecificInfo(
1176 IcebergSpecificInfo {
1177 predicate: batch_iceberg_scan.predicate.clone(),
1178 iceberg_scan_type: batch_iceberg_scan.iceberg_scan_type(),
1179 },
1180 ),
1181 as_of,
1182 })));
1183 }
1184 } else if let Some(source_node) = node.as_batch_source() {
1185 let source_node: &BatchSource = source_node;
1187 let source_catalog = source_node.source_catalog();
1188 if let Some(source_catalog) = source_catalog {
1189 let property =
1190 ConnectorProperties::extract(source_catalog.with_properties.clone(), false)?;
1191 let as_of = source_node.as_of();
1192 return Ok(Some(SourceScanInfo::new(SourceFetchInfo {
1193 schema: source_node.base.schema().clone(),
1194 connector: property,
1195 fetch_parameters: SourceFetchParameters::Empty,
1196 as_of,
1197 })));
1198 }
1199 }
1200
1201 node.inputs()
1202 .into_iter()
1203 .find_map(|n| Self::collect_stage_source(n).transpose())
1204 .transpose()
1205 }
1206
1207 fn collect_stage_file_scan(node: PlanRef) -> SchedulerResult<Option<FileScanInfo>> {
1208 if node.node_type() == BatchPlanNodeType::BatchExchange {
1209 return Ok(None);
1211 }
1212
1213 if let Some(batch_file_scan) = node.as_batch_file_scan() {
1214 return Ok(Some(FileScanInfo {
1215 file_location: batch_file_scan.core.file_location().clone(),
1216 }));
1217 }
1218
1219 node.inputs()
1220 .into_iter()
1221 .find_map(|n| Self::collect_stage_file_scan(n).transpose())
1222 .transpose()
1223 }
1224
1225 fn collect_stage_table_scan(&self, node: PlanRef) -> SchedulerResult<Option<TableScanInfo>> {
1230 let build_table_scan_info = |name, table_catalog: &TableCatalog, scan_range| {
1231 let vnode_mapping = self
1232 .worker_node_manager
1233 .fragment_mapping(table_catalog.fragment_id)?;
1234 let partitions = derive_partitions(scan_range, table_catalog, &vnode_mapping)?;
1235 let info = TableScanInfo::new(name, partitions);
1236 Ok(Some(info))
1237 };
1238 if node.node_type() == BatchPlanNodeType::BatchExchange {
1239 return Ok(None);
1241 }
1242 if let Some(scan_node) = node.as_batch_sys_seq_scan() {
1243 let name = scan_node.core().table.name.clone();
1244 Ok(Some(TableScanInfo::system_table(name)))
1245 } else if let Some(scan_node) = node.as_batch_log_seq_scan() {
1246 build_table_scan_info(
1247 scan_node.core().table_name.to_owned(),
1248 &scan_node.core().table,
1249 &[],
1250 )
1251 } else if let Some(scan_node) = node.as_batch_seq_scan() {
1252 build_table_scan_info(
1253 scan_node.core().table_name().to_owned(),
1254 &scan_node.core().table_catalog,
1255 scan_node.scan_ranges(),
1256 )
1257 } else {
1258 node.inputs()
1259 .into_iter()
1260 .find_map(|n| self.collect_stage_table_scan(n).transpose())
1261 .transpose()
1262 }
1263 }
1264
1265 fn collect_dml_table_id(node: &PlanRef) -> Option<TableId> {
1267 if node.node_type() == BatchPlanNodeType::BatchExchange {
1268 return None;
1269 }
1270 if let Some(insert) = node.as_batch_insert() {
1271 Some(insert.core.table_id)
1272 } else if let Some(update) = node.as_batch_update() {
1273 Some(update.core.table_id)
1274 } else if let Some(delete) = node.as_batch_delete() {
1275 Some(delete.core.table_id)
1276 } else {
1277 node.inputs()
1278 .into_iter()
1279 .find_map(|n| Self::collect_dml_table_id(&n))
1280 }
1281 }
1282
1283 fn collect_stage_lookup_join_parallelism(
1284 &self,
1285 node: PlanRef,
1286 ) -> SchedulerResult<Option<usize>> {
1287 if node.node_type() == BatchPlanNodeType::BatchExchange {
1288 return Ok(None);
1290 }
1291 if let Some(lookup_join) = node.as_batch_lookup_join() {
1292 let table_catalog = lookup_join.right_table();
1293 let vnode_mapping = self
1294 .worker_node_manager
1295 .fragment_mapping(table_catalog.fragment_id)?;
1296 let parallelism = vnode_mapping.iter().sorted().dedup().count();
1297 Ok(Some(parallelism))
1298 } else {
1299 node.inputs()
1300 .into_iter()
1301 .find_map(|n| self.collect_stage_lookup_join_parallelism(n).transpose())
1302 .transpose()
1303 }
1304 }
1305}
1306
1307fn derive_partitions(
1310 scan_ranges: &[ScanRange],
1311 table_catalog: &TableCatalog,
1312 vnode_mapping: &WorkerSlotMapping,
1313) -> SchedulerResult<HashMap<WorkerSlotId, TablePartitionInfo>> {
1314 let vnode_mapping = if table_catalog.vnode_count.value() != vnode_mapping.len() {
1315 assert_eq!(
1319 table_catalog.vnode_count.value(),
1320 1,
1321 "fragment vnode count {} does not match table vnode count {}",
1322 vnode_mapping.len(),
1323 table_catalog.vnode_count.value(),
1324 );
1325 &WorkerSlotMapping::new_single(vnode_mapping.iter().next().unwrap())
1326 } else {
1327 vnode_mapping
1328 };
1329 let vnode_count = vnode_mapping.len();
1330
1331 let mut partitions: HashMap<WorkerSlotId, (BitmapBuilder, Vec<_>)> = HashMap::new();
1332
1333 if scan_ranges.is_empty() {
1334 return Ok(vnode_mapping
1335 .to_bitmaps()
1336 .into_iter()
1337 .map(|(k, vnode_bitmap)| {
1338 (
1339 k,
1340 TablePartitionInfo {
1341 vnode_bitmap,
1342 scan_ranges: vec![],
1343 },
1344 )
1345 })
1346 .collect());
1347 }
1348
1349 let table_distribution = TableDistribution::new_from_storage_table_desc(
1350 Some(Bitmap::ones(vnode_count).into()),
1351 &table_catalog.table_desc().try_to_protobuf()?,
1352 );
1353
1354 for scan_range in scan_ranges {
1355 let vnode = scan_range.try_compute_vnode(&table_distribution);
1356 match vnode {
1357 None => {
1358 vnode_mapping.to_bitmaps().into_iter().for_each(
1360 |(worker_slot_id, vnode_bitmap)| {
1361 let (bitmap, scan_ranges) = partitions
1362 .entry(worker_slot_id)
1363 .or_insert_with(|| (BitmapBuilder::zeroed(vnode_count), vec![]));
1364 vnode_bitmap
1365 .iter()
1366 .enumerate()
1367 .for_each(|(vnode, b)| bitmap.set(vnode, b));
1368 scan_ranges.push(scan_range.to_protobuf());
1369 },
1370 );
1371 }
1372 Some(vnode) => {
1374 let worker_slot_id = vnode_mapping[vnode];
1375 let (bitmap, scan_ranges) = partitions
1376 .entry(worker_slot_id)
1377 .or_insert_with(|| (BitmapBuilder::zeroed(vnode_count), vec![]));
1378 bitmap.set(vnode.to_index(), true);
1379 scan_ranges.push(scan_range.to_protobuf());
1380 }
1381 }
1382 }
1383
1384 Ok(partitions
1385 .into_iter()
1386 .map(|(k, (bitmap, scan_ranges))| {
1387 (
1388 k,
1389 TablePartitionInfo {
1390 vnode_bitmap: bitmap.finish(),
1391 scan_ranges,
1392 },
1393 )
1394 })
1395 .collect())
1396}
1397
1398#[cfg(test)]
1399mod tests {
1400 use std::collections::{HashMap, HashSet};
1401
1402 use risingwave_pb::batch_plan::plan_node::NodeBody;
1403
1404 use crate::optimizer::plan_node::BatchPlanNodeType;
1405 use crate::scheduler::plan_fragmenter::StageId;
1406
1407 #[tokio::test]
1408 async fn test_fragmenter() {
1409 let query = crate::scheduler::distributed::tests::create_query().await;
1410
1411 assert_eq!(query.stage_graph.root_stage_id, 0);
1412 assert_eq!(query.stage_graph.stages.len(), 4);
1413
1414 assert_eq!(query.stage_graph.child_edges[&0], [1].into());
1416 assert_eq!(query.stage_graph.child_edges[&1], [2, 3].into());
1417 assert_eq!(query.stage_graph.child_edges[&2], HashSet::new());
1418 assert_eq!(query.stage_graph.child_edges[&3], HashSet::new());
1419
1420 assert_eq!(query.stage_graph.parent_edges[&0], HashSet::new());
1422 assert_eq!(query.stage_graph.parent_edges[&1], [0].into());
1423 assert_eq!(query.stage_graph.parent_edges[&2], [1].into());
1424 assert_eq!(query.stage_graph.parent_edges[&3], [1].into());
1425
1426 {
1428 let stage_id_to_pos: HashMap<StageId, usize> = query
1429 .stage_graph
1430 .stage_ids_by_topo_order()
1431 .enumerate()
1432 .map(|(pos, stage_id)| (stage_id, pos))
1433 .collect();
1434
1435 for stage_id in query.stage_graph.stages.keys() {
1436 let stage_pos = stage_id_to_pos[stage_id];
1437 for child_stage_id in &query.stage_graph.child_edges[stage_id] {
1438 let child_pos = stage_id_to_pos[child_stage_id];
1439 assert!(stage_pos > child_pos);
1440 }
1441 }
1442 }
1443
1444 let root_exchange = query.stage_graph.stages.get(&0).unwrap();
1446 assert_eq!(
1447 root_exchange.root.node_type(),
1448 BatchPlanNodeType::BatchExchange
1449 );
1450 assert_eq!(root_exchange.root.source_stage_id, Some(1));
1451 assert!(matches!(root_exchange.root.node, NodeBody::Exchange(_)));
1452 assert_eq!(root_exchange.parallelism, Some(1));
1453 assert!(!root_exchange.has_table_scan());
1454
1455 let join_node = query.stage_graph.stages.get(&1).unwrap();
1456 assert_eq!(join_node.root.node_type(), BatchPlanNodeType::BatchHashJoin);
1457 assert_eq!(join_node.parallelism, Some(24));
1458
1459 assert!(matches!(join_node.root.node, NodeBody::HashJoin(_)));
1460 assert_eq!(join_node.root.source_stage_id, None);
1461 assert_eq!(2, join_node.root.children.len());
1462
1463 assert!(matches!(
1464 join_node.root.children[0].node,
1465 NodeBody::Exchange(_)
1466 ));
1467 assert_eq!(join_node.root.children[0].source_stage_id, Some(2));
1468 assert_eq!(0, join_node.root.children[0].children.len());
1469
1470 assert!(matches!(
1471 join_node.root.children[1].node,
1472 NodeBody::Exchange(_)
1473 ));
1474 assert_eq!(join_node.root.children[1].source_stage_id, Some(3));
1475 assert_eq!(0, join_node.root.children[1].children.len());
1476 assert!(!join_node.has_table_scan());
1477
1478 let scan_node1 = query.stage_graph.stages.get(&2).unwrap();
1479 assert_eq!(scan_node1.root.node_type(), BatchPlanNodeType::BatchSeqScan);
1480 assert_eq!(scan_node1.root.source_stage_id, None);
1481 assert_eq!(0, scan_node1.root.children.len());
1482 assert!(scan_node1.has_table_scan());
1483
1484 let scan_node2 = query.stage_graph.stages.get(&3).unwrap();
1485 assert_eq!(scan_node2.root.node_type(), BatchPlanNodeType::BatchFilter);
1486 assert_eq!(scan_node2.root.source_stage_id, None);
1487 assert_eq!(1, scan_node2.root.children.len());
1488 assert!(scan_node2.has_table_scan());
1489 }
1490}