1use std::cmp::min;
16use std::collections::{HashMap, HashSet};
17use std::fmt::{Debug, Formatter};
18use std::num::NonZeroU64;
19use std::sync::Arc;
20
21use anyhow::anyhow;
22use async_recursion::async_recursion;
23use enum_as_inner::EnumAsInner;
24use futures::TryStreamExt;
25use iceberg::expr::Predicate as IcebergPredicate;
26use itertools::Itertools;
27use petgraph::{Directed, Graph};
28use pgwire::pg_server::SessionId;
29use risingwave_batch::error::BatchError;
30use risingwave_batch::worker_manager::worker_node_manager::WorkerNodeSelector;
31use risingwave_common::bitmap::{Bitmap, BitmapBuilder};
32use risingwave_common::catalog::{Schema, TableDesc};
33use risingwave_common::hash::table_distribution::TableDistribution;
34use risingwave_common::hash::{WorkerSlotId, WorkerSlotMapping};
35use risingwave_common::util::scan_range::ScanRange;
36use risingwave_connector::source::filesystem::opendal_source::opendal_enumerator::OpendalEnumerator;
37use risingwave_connector::source::filesystem::opendal_source::{
38 OpendalAzblob, OpendalGcs, OpendalS3,
39};
40use risingwave_connector::source::iceberg::IcebergSplitEnumerator;
41use risingwave_connector::source::kafka::KafkaSplitEnumerator;
42use risingwave_connector::source::prelude::DatagenSplitEnumerator;
43use risingwave_connector::source::reader::reader::build_opendal_fs_list_for_batch;
44use risingwave_connector::source::{
45 ConnectorProperties, SourceEnumeratorContext, SplitEnumerator, SplitImpl,
46};
47use risingwave_pb::batch_plan::iceberg_scan_node::IcebergScanType;
48use risingwave_pb::batch_plan::plan_node::NodeBody;
49use risingwave_pb::batch_plan::{ExchangeInfo, ScanRange as ScanRangeProto};
50use risingwave_pb::plan_common::Field as PbField;
51use risingwave_sqlparser::ast::AsOf;
52use serde::Serialize;
53use serde::ser::SerializeStruct;
54use uuid::Uuid;
55
56use super::SchedulerError;
57use crate::catalog::TableId;
58use crate::catalog::catalog_service::CatalogReader;
59use crate::error::RwError;
60use crate::optimizer::PlanRef;
61use crate::optimizer::plan_node::generic::{GenericPlanRef, PhysicalPlanRef};
62use crate::optimizer::plan_node::utils::to_iceberg_time_travel_as_of;
63use crate::optimizer::plan_node::{
64 BatchIcebergScan, BatchKafkaScan, BatchSource, PlanNodeId, PlanNodeType,
65};
66use crate::optimizer::property::Distribution;
67use crate::scheduler::SchedulerResult;
68
69#[derive(Clone, Debug, Hash, Eq, PartialEq)]
70pub struct QueryId {
71 pub id: String,
72}
73
74impl std::fmt::Display for QueryId {
75 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
76 write!(f, "QueryId:{}", self.id)
77 }
78}
79
80pub type StageId = u32;
81
82pub const ROOT_TASK_ID: u64 = 0;
84pub const ROOT_TASK_OUTPUT_ID: u64 = 0;
86pub type TaskId = u64;
87
88#[derive(Clone, Debug)]
90pub struct ExecutionPlanNode {
91 pub plan_node_id: PlanNodeId,
92 pub plan_node_type: PlanNodeType,
93 pub node: NodeBody,
94 pub schema: Vec<PbField>,
95
96 pub children: Vec<Arc<ExecutionPlanNode>>,
97
98 pub source_stage_id: Option<StageId>,
103}
104
105impl Serialize for ExecutionPlanNode {
106 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
107 where
108 S: serde::Serializer,
109 {
110 let mut state = serializer.serialize_struct("QueryStage", 5)?;
111 state.serialize_field("plan_node_id", &self.plan_node_id)?;
112 state.serialize_field("plan_node_type", &self.plan_node_type)?;
113 state.serialize_field("schema", &self.schema)?;
114 state.serialize_field("children", &self.children)?;
115 state.serialize_field("source_stage_id", &self.source_stage_id)?;
116 state.end()
117 }
118}
119
120impl TryFrom<PlanRef> for ExecutionPlanNode {
121 type Error = SchedulerError;
122
123 fn try_from(plan_node: PlanRef) -> Result<Self, Self::Error> {
124 Ok(Self {
125 plan_node_id: plan_node.plan_base().id(),
126 plan_node_type: plan_node.node_type(),
127 node: plan_node.try_to_batch_prost_body()?,
128 children: vec![],
129 schema: plan_node.schema().to_prost(),
130 source_stage_id: None,
131 })
132 }
133}
134
135impl ExecutionPlanNode {
136 pub fn node_type(&self) -> PlanNodeType {
137 self.plan_node_type
138 }
139}
140
141pub struct BatchPlanFragmenter {
143 query_id: QueryId,
144 next_stage_id: StageId,
145 worker_node_manager: WorkerNodeSelector,
146 catalog_reader: CatalogReader,
147
148 batch_parallelism: usize,
149 timezone: String,
150
151 stage_graph_builder: Option<StageGraphBuilder>,
152 stage_graph: Option<StageGraph>,
153}
154
155impl Default for QueryId {
156 fn default() -> Self {
157 Self {
158 id: Uuid::new_v4().to_string(),
159 }
160 }
161}
162
163impl BatchPlanFragmenter {
164 pub fn new(
165 worker_node_manager: WorkerNodeSelector,
166 catalog_reader: CatalogReader,
167 batch_parallelism: Option<NonZeroU64>,
168 timezone: String,
169 batch_node: PlanRef,
170 ) -> SchedulerResult<Self> {
171 let batch_parallelism = if let Some(num) = batch_parallelism {
176 min(
178 num.get() as usize,
179 worker_node_manager.schedule_unit_count(),
180 )
181 } else {
182 worker_node_manager.schedule_unit_count()
184 };
185
186 let mut plan_fragmenter = Self {
187 query_id: Default::default(),
188 next_stage_id: 0,
189 worker_node_manager,
190 catalog_reader,
191 batch_parallelism,
192 timezone,
193 stage_graph_builder: Some(StageGraphBuilder::new(batch_parallelism)),
194 stage_graph: None,
195 };
196 plan_fragmenter.split_into_stage(batch_node)?;
197 Ok(plan_fragmenter)
198 }
199
200 fn split_into_stage(&mut self, batch_node: PlanRef) -> SchedulerResult<()> {
202 let root_stage = self.new_stage(
203 batch_node,
204 Some(Distribution::Single.to_prost(
205 1,
206 &self.catalog_reader,
207 &self.worker_node_manager,
208 )?),
209 )?;
210 self.stage_graph = Some(
211 self.stage_graph_builder
212 .take()
213 .unwrap()
214 .build(root_stage.id),
215 );
216 Ok(())
217 }
218}
219
220#[derive(Debug)]
222#[cfg_attr(test, derive(Clone))]
223pub struct Query {
224 pub query_id: QueryId,
226 pub stage_graph: StageGraph,
227}
228
229impl Query {
230 pub fn leaf_stages(&self) -> Vec<StageId> {
231 let mut ret_leaf_stages = Vec::new();
232 for stage_id in self.stage_graph.stages.keys() {
233 if self
234 .stage_graph
235 .get_child_stages_unchecked(stage_id)
236 .is_empty()
237 {
238 ret_leaf_stages.push(*stage_id);
239 }
240 }
241 ret_leaf_stages
242 }
243
244 pub fn get_parents(&self, stage_id: &StageId) -> &HashSet<StageId> {
245 self.stage_graph.parent_edges.get(stage_id).unwrap()
246 }
247
248 pub fn root_stage_id(&self) -> StageId {
249 self.stage_graph.root_stage_id
250 }
251
252 pub fn query_id(&self) -> &QueryId {
253 &self.query_id
254 }
255
256 pub fn stages_with_table_scan(&self) -> HashSet<StageId> {
257 self.stage_graph
258 .stages
259 .iter()
260 .filter_map(|(stage_id, stage_query)| {
261 if stage_query.has_table_scan() {
262 Some(*stage_id)
263 } else {
264 None
265 }
266 })
267 .collect()
268 }
269
270 pub fn has_lookup_join_stage(&self) -> bool {
271 self.stage_graph
272 .stages
273 .iter()
274 .any(|(_stage_id, stage_query)| stage_query.has_lookup_join())
275 }
276}
277
278#[derive(Debug, Clone)]
279pub enum SourceFetchParameters {
280 IcebergSpecificInfo(IcebergSpecificInfo),
281 KafkaTimebound {
282 lower: Option<i64>,
283 upper: Option<i64>,
284 },
285 Empty,
286}
287
288#[derive(Debug, Clone)]
289pub struct SourceFetchInfo {
290 pub schema: Schema,
291 pub connector: ConnectorProperties,
294 pub fetch_parameters: SourceFetchParameters,
297 pub as_of: Option<AsOf>,
298}
299
300#[derive(Debug, Clone)]
301pub struct IcebergSpecificInfo {
302 pub iceberg_scan_type: IcebergScanType,
303 pub predicate: IcebergPredicate,
304}
305
306#[derive(Clone, Debug)]
307pub enum SourceScanInfo {
308 Incomplete(SourceFetchInfo),
310 Complete(Vec<SplitImpl>),
311}
312
313impl SourceScanInfo {
314 pub fn new(fetch_info: SourceFetchInfo) -> Self {
315 Self::Incomplete(fetch_info)
316 }
317
318 pub async fn complete(
319 self,
320 batch_parallelism: usize,
321 timezone: String,
322 ) -> SchedulerResult<Self> {
323 let fetch_info = match self {
324 SourceScanInfo::Incomplete(fetch_info) => fetch_info,
325 SourceScanInfo::Complete(_) => {
326 unreachable!("Never call complete when SourceScanInfo is already complete")
327 }
328 };
329 match (fetch_info.connector, fetch_info.fetch_parameters) {
330 (
331 ConnectorProperties::Kafka(prop),
332 SourceFetchParameters::KafkaTimebound { lower, upper },
333 ) => {
334 let mut kafka_enumerator =
335 KafkaSplitEnumerator::new(*prop, SourceEnumeratorContext::dummy().into())
336 .await?;
337 let split_info = kafka_enumerator
338 .list_splits_batch(lower, upper)
339 .await?
340 .into_iter()
341 .map(SplitImpl::Kafka)
342 .collect_vec();
343
344 Ok(SourceScanInfo::Complete(split_info))
345 }
346 (ConnectorProperties::Datagen(prop), SourceFetchParameters::Empty) => {
347 let mut datagen_enumerator =
348 DatagenSplitEnumerator::new(*prop, SourceEnumeratorContext::dummy().into())
349 .await?;
350 let split_info = datagen_enumerator.list_splits().await?;
351 let res = split_info.into_iter().map(SplitImpl::Datagen).collect_vec();
352
353 Ok(SourceScanInfo::Complete(res))
354 }
355 (ConnectorProperties::OpendalS3(prop), SourceFetchParameters::Empty) => {
356 let lister: OpendalEnumerator<OpendalS3> = OpendalEnumerator::new_s3_source(
357 &prop.s3_properties,
358 prop.assume_role,
359 prop.fs_common.compression_format,
360 )?;
361 let stream = build_opendal_fs_list_for_batch(lister);
362
363 let batch_res: Vec<_> = stream.try_collect().await?;
364 let res = batch_res
365 .into_iter()
366 .map(SplitImpl::OpendalS3)
367 .collect_vec();
368
369 Ok(SourceScanInfo::Complete(res))
370 }
371 (ConnectorProperties::Gcs(prop), SourceFetchParameters::Empty) => {
372 let lister: OpendalEnumerator<OpendalGcs> =
373 OpendalEnumerator::new_gcs_source(*prop)?;
374 let stream = build_opendal_fs_list_for_batch(lister);
375 let batch_res: Vec<_> = stream.try_collect().await?;
376 let res = batch_res.into_iter().map(SplitImpl::Gcs).collect_vec();
377
378 Ok(SourceScanInfo::Complete(res))
379 }
380 (ConnectorProperties::Azblob(prop), SourceFetchParameters::Empty) => {
381 let lister: OpendalEnumerator<OpendalAzblob> =
382 OpendalEnumerator::new_azblob_source(*prop)?;
383 let stream = build_opendal_fs_list_for_batch(lister);
384 let batch_res: Vec<_> = stream.try_collect().await?;
385 let res = batch_res.into_iter().map(SplitImpl::Azblob).collect_vec();
386
387 Ok(SourceScanInfo::Complete(res))
388 }
389 (
390 ConnectorProperties::Iceberg(prop),
391 SourceFetchParameters::IcebergSpecificInfo(iceberg_specific_info),
392 ) => {
393 let iceberg_enumerator =
394 IcebergSplitEnumerator::new(*prop, SourceEnumeratorContext::dummy().into())
395 .await?;
396
397 let time_travel_info = to_iceberg_time_travel_as_of(&fetch_info.as_of, &timezone)?;
398
399 let split_info = iceberg_enumerator
400 .list_splits_batch(
401 fetch_info.schema,
402 time_travel_info,
403 batch_parallelism,
404 iceberg_specific_info.iceberg_scan_type,
405 iceberg_specific_info.predicate,
406 )
407 .await?
408 .into_iter()
409 .map(SplitImpl::Iceberg)
410 .collect_vec();
411
412 Ok(SourceScanInfo::Complete(split_info))
413 }
414 (connector, _) => Err(SchedulerError::Internal(anyhow!(
415 "Unsupported to query directly from this {} source, \
416 please create a table or streaming job from it",
417 connector.kind()
418 ))),
419 }
420 }
421
422 pub fn split_info(&self) -> SchedulerResult<&Vec<SplitImpl>> {
423 match self {
424 Self::Incomplete(_) => Err(SchedulerError::Internal(anyhow!(
425 "Should not get split info from incomplete source scan info"
426 ))),
427 Self::Complete(split_info) => Ok(split_info),
428 }
429 }
430}
431
432#[derive(Clone, Debug)]
433pub struct TableScanInfo {
434 name: String,
436
437 partitions: Option<HashMap<WorkerSlotId, TablePartitionInfo>>,
445}
446
447impl TableScanInfo {
448 pub fn new(name: String, partitions: HashMap<WorkerSlotId, TablePartitionInfo>) -> Self {
450 Self {
451 name,
452 partitions: Some(partitions),
453 }
454 }
455
456 pub fn system_table(name: String) -> Self {
458 Self {
459 name,
460 partitions: None,
461 }
462 }
463
464 pub fn name(&self) -> &str {
465 self.name.as_ref()
466 }
467
468 pub fn partitions(&self) -> Option<&HashMap<WorkerSlotId, TablePartitionInfo>> {
469 self.partitions.as_ref()
470 }
471}
472
473#[derive(Clone, Debug)]
474pub struct TablePartitionInfo {
475 pub vnode_bitmap: Bitmap,
476 pub scan_ranges: Vec<ScanRangeProto>,
477}
478
479#[derive(Clone, Debug, EnumAsInner)]
480pub enum PartitionInfo {
481 Table(TablePartitionInfo),
482 Source(Vec<SplitImpl>),
483 File(Vec<String>),
484}
485
486#[derive(Clone, Debug)]
487pub struct FileScanInfo {
488 pub file_location: Vec<String>,
489}
490
491#[derive(Clone)]
493pub struct QueryStage {
494 pub query_id: QueryId,
495 pub id: StageId,
496 pub root: Arc<ExecutionPlanNode>,
497 pub exchange_info: Option<ExchangeInfo>,
498 pub parallelism: Option<u32>,
499 pub table_scan_info: Option<TableScanInfo>,
501 pub source_info: Option<SourceScanInfo>,
502 pub file_scan_info: Option<FileScanInfo>,
503 pub has_lookup_join: bool,
504 pub dml_table_id: Option<TableId>,
505 pub session_id: SessionId,
506 pub batch_enable_distributed_dml: bool,
507
508 children_exchange_distribution: Option<HashMap<StageId, Distribution>>,
510}
511
512impl QueryStage {
513 pub fn has_table_scan(&self) -> bool {
517 self.table_scan_info.is_some()
518 }
519
520 pub fn has_lookup_join(&self) -> bool {
523 self.has_lookup_join
524 }
525
526 pub fn clone_with_exchange_info(
527 &self,
528 exchange_info: Option<ExchangeInfo>,
529 parallelism: Option<u32>,
530 ) -> Self {
531 if let Some(exchange_info) = exchange_info {
532 return Self {
533 query_id: self.query_id.clone(),
534 id: self.id,
535 root: self.root.clone(),
536 exchange_info: Some(exchange_info),
537 parallelism,
538 table_scan_info: self.table_scan_info.clone(),
539 source_info: self.source_info.clone(),
540 file_scan_info: self.file_scan_info.clone(),
541 has_lookup_join: self.has_lookup_join,
542 dml_table_id: self.dml_table_id,
543 session_id: self.session_id,
544 batch_enable_distributed_dml: self.batch_enable_distributed_dml,
545 children_exchange_distribution: self.children_exchange_distribution.clone(),
546 };
547 }
548 self.clone()
549 }
550
551 pub fn clone_with_exchange_info_and_complete_source_info(
552 &self,
553 exchange_info: Option<ExchangeInfo>,
554 source_info: SourceScanInfo,
555 task_parallelism: u32,
556 ) -> Self {
557 assert!(matches!(source_info, SourceScanInfo::Complete(_)));
558 let exchange_info = if let Some(exchange_info) = exchange_info {
559 Some(exchange_info)
560 } else {
561 self.exchange_info.clone()
562 };
563 Self {
564 query_id: self.query_id.clone(),
565 id: self.id,
566 root: self.root.clone(),
567 exchange_info,
568 parallelism: Some(task_parallelism),
569 table_scan_info: self.table_scan_info.clone(),
570 source_info: Some(source_info),
571 file_scan_info: self.file_scan_info.clone(),
572 has_lookup_join: self.has_lookup_join,
573 dml_table_id: self.dml_table_id,
574 session_id: self.session_id,
575 batch_enable_distributed_dml: self.batch_enable_distributed_dml,
576 children_exchange_distribution: None,
577 }
578 }
579}
580
581impl Debug for QueryStage {
582 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
583 f.debug_struct("QueryStage")
584 .field("id", &self.id)
585 .field("parallelism", &self.parallelism)
586 .field("exchange_info", &self.exchange_info)
587 .field("has_table_scan", &self.has_table_scan())
588 .finish()
589 }
590}
591
592impl Serialize for QueryStage {
593 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
594 where
595 S: serde::Serializer,
596 {
597 let mut state = serializer.serialize_struct("QueryStage", 3)?;
598 state.serialize_field("root", &self.root)?;
599 state.serialize_field("parallelism", &self.parallelism)?;
600 state.serialize_field("exchange_info", &self.exchange_info)?;
601 state.end()
602 }
603}
604
605pub type QueryStageRef = Arc<QueryStage>;
606
607struct QueryStageBuilder {
608 query_id: QueryId,
609 id: StageId,
610 root: Option<Arc<ExecutionPlanNode>>,
611 parallelism: Option<u32>,
612 exchange_info: Option<ExchangeInfo>,
613
614 children_stages: Vec<QueryStageRef>,
615 table_scan_info: Option<TableScanInfo>,
617 source_info: Option<SourceScanInfo>,
618 file_scan_file: Option<FileScanInfo>,
619 has_lookup_join: bool,
620 dml_table_id: Option<TableId>,
621 session_id: SessionId,
622 batch_enable_distributed_dml: bool,
623
624 children_exchange_distribution: HashMap<StageId, Distribution>,
625}
626
627impl QueryStageBuilder {
628 #[allow(clippy::too_many_arguments)]
629 fn new(
630 id: StageId,
631 query_id: QueryId,
632 parallelism: Option<u32>,
633 exchange_info: Option<ExchangeInfo>,
634 table_scan_info: Option<TableScanInfo>,
635 source_info: Option<SourceScanInfo>,
636 file_scan_file: Option<FileScanInfo>,
637 has_lookup_join: bool,
638 dml_table_id: Option<TableId>,
639 session_id: SessionId,
640 batch_enable_distributed_dml: bool,
641 ) -> Self {
642 Self {
643 query_id,
644 id,
645 root: None,
646 parallelism,
647 exchange_info,
648 children_stages: vec![],
649 table_scan_info,
650 source_info,
651 file_scan_file,
652 has_lookup_join,
653 dml_table_id,
654 session_id,
655 batch_enable_distributed_dml,
656 children_exchange_distribution: HashMap::new(),
657 }
658 }
659
660 fn finish(self, stage_graph_builder: &mut StageGraphBuilder) -> QueryStageRef {
661 let children_exchange_distribution = if self.parallelism.is_none() {
662 Some(self.children_exchange_distribution)
663 } else {
664 None
665 };
666 let stage = Arc::new(QueryStage {
667 query_id: self.query_id,
668 id: self.id,
669 root: self.root.unwrap(),
670 exchange_info: self.exchange_info,
671 parallelism: self.parallelism,
672 table_scan_info: self.table_scan_info,
673 source_info: self.source_info,
674 file_scan_info: self.file_scan_file,
675 has_lookup_join: self.has_lookup_join,
676 dml_table_id: self.dml_table_id,
677 session_id: self.session_id,
678 batch_enable_distributed_dml: self.batch_enable_distributed_dml,
679 children_exchange_distribution,
680 });
681
682 stage_graph_builder.add_node(stage.clone());
683 for child_stage in self.children_stages {
684 stage_graph_builder.link_to_child(self.id, child_stage.id);
685 }
686 stage
687 }
688}
689
690#[derive(Debug, Serialize)]
692#[cfg_attr(test, derive(Clone))]
693pub struct StageGraph {
694 pub root_stage_id: StageId,
695 pub stages: HashMap<StageId, QueryStageRef>,
696 child_edges: HashMap<StageId, HashSet<StageId>>,
698 parent_edges: HashMap<StageId, HashSet<StageId>>,
700
701 batch_parallelism: usize,
702}
703
704impl StageGraph {
705 pub fn get_child_stages_unchecked(&self, stage_id: &StageId) -> &HashSet<StageId> {
706 self.child_edges.get(stage_id).unwrap()
707 }
708
709 pub fn get_child_stages(&self, stage_id: &StageId) -> Option<&HashSet<StageId>> {
710 self.child_edges.get(stage_id)
711 }
712
713 pub fn stage_ids_by_topo_order(&self) -> impl Iterator<Item = StageId> {
715 let mut stack = Vec::with_capacity(self.stages.len());
716 stack.push(self.root_stage_id);
717 let mut ret = Vec::with_capacity(self.stages.len());
718 let mut existing = HashSet::with_capacity(self.stages.len());
719
720 while let Some(s) = stack.pop() {
721 if !existing.contains(&s) {
722 ret.push(s);
723 existing.insert(s);
724 stack.extend(&self.child_edges[&s]);
725 }
726 }
727
728 ret.into_iter().rev()
729 }
730
731 async fn complete(
732 self,
733 catalog_reader: &CatalogReader,
734 worker_node_manager: &WorkerNodeSelector,
735 timezone: String,
736 ) -> SchedulerResult<StageGraph> {
737 let mut complete_stages = HashMap::new();
738 self.complete_stage(
739 self.stages.get(&self.root_stage_id).unwrap().clone(),
740 None,
741 &mut complete_stages,
742 catalog_reader,
743 worker_node_manager,
744 timezone,
745 )
746 .await?;
747 Ok(StageGraph {
748 root_stage_id: self.root_stage_id,
749 stages: complete_stages,
750 child_edges: self.child_edges,
751 parent_edges: self.parent_edges,
752 batch_parallelism: self.batch_parallelism,
753 })
754 }
755
756 #[async_recursion]
757 async fn complete_stage(
758 &self,
759 stage: QueryStageRef,
760 exchange_info: Option<ExchangeInfo>,
761 complete_stages: &mut HashMap<StageId, QueryStageRef>,
762 catalog_reader: &CatalogReader,
763 worker_node_manager: &WorkerNodeSelector,
764 timezone: String,
765 ) -> SchedulerResult<()> {
766 let parallelism = if stage.parallelism.is_some() {
767 complete_stages.insert(
769 stage.id,
770 Arc::new(stage.clone_with_exchange_info(exchange_info, stage.parallelism)),
771 );
772 None
773 } else if matches!(stage.source_info, Some(SourceScanInfo::Incomplete(_))) {
774 let complete_source_info = stage
775 .source_info
776 .as_ref()
777 .unwrap()
778 .clone()
779 .complete(self.batch_parallelism, timezone.to_owned())
780 .await?;
781
782 let task_parallelism = match &stage.source_info {
790 Some(SourceScanInfo::Incomplete(source_fetch_info)) => {
791 match source_fetch_info.connector {
792 ConnectorProperties::Gcs(_)
793 | ConnectorProperties::OpendalS3(_)
794 | ConnectorProperties::Azblob(_) => (min(
795 complete_source_info.split_info().unwrap().len() as u32,
796 (self.batch_parallelism / 2) as u32,
797 ))
798 .max(1),
799 _ => complete_source_info.split_info().unwrap().len() as u32,
800 }
801 }
802 _ => unreachable!(),
803 };
804 let complete_stage = Arc::new(stage.clone_with_exchange_info_and_complete_source_info(
807 exchange_info,
808 complete_source_info,
809 task_parallelism,
810 ));
811 let parallelism = complete_stage.parallelism;
812 complete_stages.insert(stage.id, complete_stage);
813 parallelism
814 } else {
815 assert!(stage.file_scan_info.is_some());
816 let parallelism = min(
817 self.batch_parallelism / 2,
818 stage.file_scan_info.as_ref().unwrap().file_location.len(),
819 );
820 complete_stages.insert(
821 stage.id,
822 Arc::new(stage.clone_with_exchange_info(exchange_info, Some(parallelism as u32))),
823 );
824 None
825 };
826
827 for child_stage_id in self.child_edges.get(&stage.id).unwrap_or(&HashSet::new()) {
828 let exchange_info = if let Some(parallelism) = parallelism {
829 let exchange_distribution = stage
830 .children_exchange_distribution
831 .as_ref()
832 .unwrap()
833 .get(child_stage_id)
834 .expect("Exchange distribution is not consistent with the stage graph");
835 Some(exchange_distribution.to_prost(
836 parallelism,
837 catalog_reader,
838 worker_node_manager,
839 )?)
840 } else {
841 None
842 };
843 self.complete_stage(
844 self.stages.get(child_stage_id).unwrap().clone(),
845 exchange_info,
846 complete_stages,
847 catalog_reader,
848 worker_node_manager,
849 timezone.to_owned(),
850 )
851 .await?;
852 }
853
854 Ok(())
855 }
856
857 pub fn to_petgraph(&self) -> Graph<String, String, Directed> {
859 let mut graph = Graph::<String, String, Directed>::new();
860
861 let mut node_indices = HashMap::new();
862
863 for (&stage_id, stage_ref) in self.stages.iter().sorted_by_key(|(id, _)| **id) {
865 let node_label = format!("Stage {}: {:?}", stage_id, stage_ref);
866 let node_index = graph.add_node(node_label);
867 node_indices.insert(stage_id, node_index);
868 }
869
870 for (&parent_id, children) in &self.child_edges {
872 if let Some(&parent_index) = node_indices.get(&parent_id) {
873 for &child_id in children {
874 if let Some(&child_index) = node_indices.get(&child_id) {
875 graph.add_edge(parent_index, child_index, "".to_owned());
877 }
878 }
879 }
880 }
881
882 graph
883 }
884}
885
886struct StageGraphBuilder {
887 stages: HashMap<StageId, QueryStageRef>,
888 child_edges: HashMap<StageId, HashSet<StageId>>,
889 parent_edges: HashMap<StageId, HashSet<StageId>>,
890 batch_parallelism: usize,
891}
892
893impl StageGraphBuilder {
894 pub fn new(batch_parallelism: usize) -> Self {
895 Self {
896 stages: HashMap::new(),
897 child_edges: HashMap::new(),
898 parent_edges: HashMap::new(),
899 batch_parallelism,
900 }
901 }
902
903 pub fn build(self, root_stage_id: StageId) -> StageGraph {
904 StageGraph {
905 root_stage_id,
906 stages: self.stages,
907 child_edges: self.child_edges,
908 parent_edges: self.parent_edges,
909 batch_parallelism: self.batch_parallelism,
910 }
911 }
912
913 pub fn link_to_child(&mut self, parent_id: StageId, child_id: StageId) {
916 self.child_edges
917 .get_mut(&parent_id)
918 .unwrap()
919 .insert(child_id);
920 self.parent_edges
921 .get_mut(&child_id)
922 .unwrap()
923 .insert(parent_id);
924 }
925
926 pub fn add_node(&mut self, stage: QueryStageRef) {
927 self.child_edges.insert(stage.id, HashSet::new());
929 self.parent_edges.insert(stage.id, HashSet::new());
930 self.stages.insert(stage.id, stage);
931 }
932}
933
934impl BatchPlanFragmenter {
935 pub async fn generate_complete_query(self) -> SchedulerResult<Query> {
941 let stage_graph = self.stage_graph.unwrap();
942 let new_stage_graph = stage_graph
943 .complete(
944 &self.catalog_reader,
945 &self.worker_node_manager,
946 self.timezone.to_owned(),
947 )
948 .await?;
949 Ok(Query {
950 query_id: self.query_id,
951 stage_graph: new_stage_graph,
952 })
953 }
954
955 fn new_stage(
956 &mut self,
957 root: PlanRef,
958 exchange_info: Option<ExchangeInfo>,
959 ) -> SchedulerResult<QueryStageRef> {
960 let next_stage_id = self.next_stage_id;
961 self.next_stage_id += 1;
962
963 let mut table_scan_info = self.collect_stage_table_scan(root.clone())?;
964 let source_info = if table_scan_info.is_none() {
967 Self::collect_stage_source(root.clone())?
968 } else {
969 None
970 };
971
972 let file_scan_info = if table_scan_info.is_none() && source_info.is_none() {
973 Self::collect_stage_file_scan(root.clone())?
974 } else {
975 None
976 };
977
978 let mut has_lookup_join = false;
979 let parallelism = match root.distribution() {
980 Distribution::Single => {
981 if let Some(info) = &mut table_scan_info {
982 if let Some(partitions) = &mut info.partitions {
983 if partitions.len() != 1 {
984 tracing::warn!(
987 "The stage has single distribution, but contains a scan of table `{}` with {} partitions. A single random worker will be assigned",
988 info.name,
989 partitions.len()
990 );
991
992 *partitions = partitions
993 .drain()
994 .take(1)
995 .update(|(_, info)| {
996 info.vnode_bitmap = Bitmap::ones(info.vnode_bitmap.len());
997 })
998 .collect();
999 }
1000 } else {
1001 }
1003 } else if source_info.is_some() {
1004 return Err(SchedulerError::Internal(anyhow!(
1005 "The stage has single distribution, but contains a source operator"
1006 )));
1007 }
1008 1
1009 }
1010 _ => {
1011 if let Some(table_scan_info) = &table_scan_info {
1012 table_scan_info
1013 .partitions
1014 .as_ref()
1015 .map(|m| m.len())
1016 .unwrap_or(1)
1017 } else if let Some(lookup_join_parallelism) =
1018 self.collect_stage_lookup_join_parallelism(root.clone())?
1019 {
1020 has_lookup_join = true;
1021 lookup_join_parallelism
1022 } else if source_info.is_some() {
1023 0
1024 } else if file_scan_info.is_some() {
1025 1
1026 } else {
1027 self.batch_parallelism
1028 }
1029 }
1030 };
1031 if source_info.is_none() && file_scan_info.is_none() && parallelism == 0 {
1032 return Err(BatchError::EmptyWorkerNodes.into());
1033 }
1034 let parallelism = if parallelism == 0 {
1035 None
1036 } else {
1037 Some(parallelism as u32)
1038 };
1039 let dml_table_id = Self::collect_dml_table_id(&root);
1040 let mut builder = QueryStageBuilder::new(
1041 next_stage_id,
1042 self.query_id.clone(),
1043 parallelism,
1044 exchange_info,
1045 table_scan_info,
1046 source_info,
1047 file_scan_info,
1048 has_lookup_join,
1049 dml_table_id,
1050 root.ctx().session_ctx().session_id(),
1051 root.ctx()
1052 .session_ctx()
1053 .config()
1054 .batch_enable_distributed_dml(),
1055 );
1056
1057 self.visit_node(root, &mut builder, None)?;
1058
1059 Ok(builder.finish(self.stage_graph_builder.as_mut().unwrap()))
1060 }
1061
1062 fn visit_node(
1063 &mut self,
1064 node: PlanRef,
1065 builder: &mut QueryStageBuilder,
1066 parent_exec_node: Option<&mut ExecutionPlanNode>,
1067 ) -> SchedulerResult<()> {
1068 match node.node_type() {
1069 PlanNodeType::BatchExchange => {
1070 self.visit_exchange(node.clone(), builder, parent_exec_node)?;
1071 }
1072 _ => {
1073 let mut execution_plan_node = ExecutionPlanNode::try_from(node.clone())?;
1074
1075 for child in node.inputs() {
1076 self.visit_node(child, builder, Some(&mut execution_plan_node))?;
1077 }
1078
1079 if let Some(parent) = parent_exec_node {
1080 parent.children.push(Arc::new(execution_plan_node));
1081 } else {
1082 builder.root = Some(Arc::new(execution_plan_node));
1083 }
1084 }
1085 }
1086 Ok(())
1087 }
1088
1089 fn visit_exchange(
1090 &mut self,
1091 node: PlanRef,
1092 builder: &mut QueryStageBuilder,
1093 parent_exec_node: Option<&mut ExecutionPlanNode>,
1094 ) -> SchedulerResult<()> {
1095 let mut execution_plan_node = ExecutionPlanNode::try_from(node.clone())?;
1096 let child_exchange_info = if let Some(parallelism) = builder.parallelism {
1097 Some(node.distribution().to_prost(
1098 parallelism,
1099 &self.catalog_reader,
1100 &self.worker_node_manager,
1101 )?)
1102 } else {
1103 None
1104 };
1105 let child_stage = self.new_stage(node.inputs()[0].clone(), child_exchange_info)?;
1106 execution_plan_node.source_stage_id = Some(child_stage.id);
1107 if builder.parallelism.is_none() {
1108 builder
1109 .children_exchange_distribution
1110 .insert(child_stage.id, node.distribution().clone());
1111 }
1112
1113 if let Some(parent) = parent_exec_node {
1114 parent.children.push(Arc::new(execution_plan_node));
1115 } else {
1116 builder.root = Some(Arc::new(execution_plan_node));
1117 }
1118
1119 builder.children_stages.push(child_stage);
1120 Ok(())
1121 }
1122
1123 fn collect_stage_source(node: PlanRef) -> SchedulerResult<Option<SourceScanInfo>> {
1128 if node.node_type() == PlanNodeType::BatchExchange {
1129 return Ok(None);
1131 }
1132
1133 if let Some(batch_kafka_node) = node.as_batch_kafka_scan() {
1134 let batch_kafka_scan: &BatchKafkaScan = batch_kafka_node;
1135 let source_catalog = batch_kafka_scan.source_catalog();
1136 if let Some(source_catalog) = source_catalog {
1137 let property =
1138 ConnectorProperties::extract(source_catalog.with_properties.clone(), false)?;
1139 let timestamp_bound = batch_kafka_scan.kafka_timestamp_range_value();
1140 return Ok(Some(SourceScanInfo::new(SourceFetchInfo {
1141 schema: batch_kafka_scan.base.schema().clone(),
1142 connector: property,
1143 fetch_parameters: SourceFetchParameters::KafkaTimebound {
1144 lower: timestamp_bound.0,
1145 upper: timestamp_bound.1,
1146 },
1147 as_of: None,
1148 })));
1149 }
1150 } else if let Some(batch_iceberg_scan) = node.as_batch_iceberg_scan() {
1151 let batch_iceberg_scan: &BatchIcebergScan = batch_iceberg_scan;
1152 let source_catalog = batch_iceberg_scan.source_catalog();
1153 if let Some(source_catalog) = source_catalog {
1154 let property =
1155 ConnectorProperties::extract(source_catalog.with_properties.clone(), false)?;
1156 let as_of = batch_iceberg_scan.as_of();
1157 return Ok(Some(SourceScanInfo::new(SourceFetchInfo {
1158 schema: batch_iceberg_scan.base.schema().clone(),
1159 connector: property,
1160 fetch_parameters: SourceFetchParameters::IcebergSpecificInfo(
1161 IcebergSpecificInfo {
1162 predicate: batch_iceberg_scan.predicate.clone(),
1163 iceberg_scan_type: batch_iceberg_scan.iceberg_scan_type(),
1164 },
1165 ),
1166 as_of,
1167 })));
1168 }
1169 } else if let Some(source_node) = node.as_batch_source() {
1170 let source_node: &BatchSource = source_node;
1172 let source_catalog = source_node.source_catalog();
1173 if let Some(source_catalog) = source_catalog {
1174 let property =
1175 ConnectorProperties::extract(source_catalog.with_properties.clone(), false)?;
1176 let as_of = source_node.as_of();
1177 return Ok(Some(SourceScanInfo::new(SourceFetchInfo {
1178 schema: source_node.base.schema().clone(),
1179 connector: property,
1180 fetch_parameters: SourceFetchParameters::Empty,
1181 as_of,
1182 })));
1183 }
1184 }
1185
1186 node.inputs()
1187 .into_iter()
1188 .find_map(|n| Self::collect_stage_source(n).transpose())
1189 .transpose()
1190 }
1191
1192 fn collect_stage_file_scan(node: PlanRef) -> SchedulerResult<Option<FileScanInfo>> {
1193 if node.node_type() == PlanNodeType::BatchExchange {
1194 return Ok(None);
1196 }
1197
1198 if let Some(batch_file_scan) = node.as_batch_file_scan() {
1199 return Ok(Some(FileScanInfo {
1200 file_location: batch_file_scan.core.file_location().clone(),
1201 }));
1202 }
1203
1204 node.inputs()
1205 .into_iter()
1206 .find_map(|n| Self::collect_stage_file_scan(n).transpose())
1207 .transpose()
1208 }
1209
1210 fn collect_stage_table_scan(&self, node: PlanRef) -> SchedulerResult<Option<TableScanInfo>> {
1215 let build_table_scan_info = |name, table_desc: &TableDesc, scan_range| {
1216 let table_catalog = self
1217 .catalog_reader
1218 .read_guard()
1219 .get_any_table_by_id(&table_desc.table_id)
1220 .cloned()
1221 .map_err(RwError::from)?;
1222 let vnode_mapping = self
1223 .worker_node_manager
1224 .fragment_mapping(table_catalog.fragment_id)?;
1225 let partitions = derive_partitions(scan_range, table_desc, &vnode_mapping)?;
1226 let info = TableScanInfo::new(name, partitions);
1227 Ok(Some(info))
1228 };
1229 if node.node_type() == PlanNodeType::BatchExchange {
1230 return Ok(None);
1232 }
1233 if let Some(scan_node) = node.as_batch_sys_seq_scan() {
1234 let name = scan_node.core().table_name.to_owned();
1235 Ok(Some(TableScanInfo::system_table(name)))
1236 } else if let Some(scan_node) = node.as_batch_log_seq_scan() {
1237 build_table_scan_info(
1238 scan_node.core().table_name.to_owned(),
1239 &scan_node.core().table_desc,
1240 &[],
1241 )
1242 } else if let Some(scan_node) = node.as_batch_seq_scan() {
1243 build_table_scan_info(
1244 scan_node.core().table_name.to_owned(),
1245 &scan_node.core().table_desc,
1246 scan_node.scan_ranges(),
1247 )
1248 } else {
1249 node.inputs()
1250 .into_iter()
1251 .find_map(|n| self.collect_stage_table_scan(n).transpose())
1252 .transpose()
1253 }
1254 }
1255
1256 fn collect_dml_table_id(node: &PlanRef) -> Option<TableId> {
1258 if node.node_type() == PlanNodeType::BatchExchange {
1259 return None;
1260 }
1261 if let Some(insert) = node.as_batch_insert() {
1262 Some(insert.core.table_id)
1263 } else if let Some(update) = node.as_batch_update() {
1264 Some(update.core.table_id)
1265 } else if let Some(delete) = node.as_batch_delete() {
1266 Some(delete.core.table_id)
1267 } else {
1268 node.inputs()
1269 .into_iter()
1270 .find_map(|n| Self::collect_dml_table_id(&n))
1271 }
1272 }
1273
1274 fn collect_stage_lookup_join_parallelism(
1275 &self,
1276 node: PlanRef,
1277 ) -> SchedulerResult<Option<usize>> {
1278 if node.node_type() == PlanNodeType::BatchExchange {
1279 return Ok(None);
1281 }
1282 if let Some(lookup_join) = node.as_batch_lookup_join() {
1283 let table_desc = lookup_join.right_table_desc();
1284 let table_catalog = self
1285 .catalog_reader
1286 .read_guard()
1287 .get_any_table_by_id(&table_desc.table_id)
1288 .cloned()
1289 .map_err(RwError::from)?;
1290 let vnode_mapping = self
1291 .worker_node_manager
1292 .fragment_mapping(table_catalog.fragment_id)?;
1293 let parallelism = vnode_mapping.iter().sorted().dedup().count();
1294 Ok(Some(parallelism))
1295 } else {
1296 node.inputs()
1297 .into_iter()
1298 .find_map(|n| self.collect_stage_lookup_join_parallelism(n).transpose())
1299 .transpose()
1300 }
1301 }
1302}
1303
1304fn derive_partitions(
1307 scan_ranges: &[ScanRange],
1308 table_desc: &TableDesc,
1309 vnode_mapping: &WorkerSlotMapping,
1310) -> SchedulerResult<HashMap<WorkerSlotId, TablePartitionInfo>> {
1311 let vnode_mapping = if table_desc.vnode_count != vnode_mapping.len() {
1312 assert!(
1316 table_desc.vnode_count == 1,
1317 "fragment vnode count {} does not match table vnode count {}",
1318 vnode_mapping.len(),
1319 table_desc.vnode_count,
1320 );
1321 &WorkerSlotMapping::new_single(vnode_mapping.iter().next().unwrap())
1322 } else {
1323 vnode_mapping
1324 };
1325 let vnode_count = vnode_mapping.len();
1326
1327 let mut partitions: HashMap<WorkerSlotId, (BitmapBuilder, Vec<_>)> = HashMap::new();
1328
1329 if scan_ranges.is_empty() {
1330 return Ok(vnode_mapping
1331 .to_bitmaps()
1332 .into_iter()
1333 .map(|(k, vnode_bitmap)| {
1334 (
1335 k,
1336 TablePartitionInfo {
1337 vnode_bitmap,
1338 scan_ranges: vec![],
1339 },
1340 )
1341 })
1342 .collect());
1343 }
1344
1345 let table_distribution = TableDistribution::new_from_storage_table_desc(
1346 Some(Bitmap::ones(vnode_count).into()),
1347 &table_desc.try_to_protobuf()?,
1348 );
1349
1350 for scan_range in scan_ranges {
1351 let vnode = scan_range.try_compute_vnode(&table_distribution);
1352 match vnode {
1353 None => {
1354 vnode_mapping.to_bitmaps().into_iter().for_each(
1356 |(worker_slot_id, vnode_bitmap)| {
1357 let (bitmap, scan_ranges) = partitions
1358 .entry(worker_slot_id)
1359 .or_insert_with(|| (BitmapBuilder::zeroed(vnode_count), vec![]));
1360 vnode_bitmap
1361 .iter()
1362 .enumerate()
1363 .for_each(|(vnode, b)| bitmap.set(vnode, b));
1364 scan_ranges.push(scan_range.to_protobuf());
1365 },
1366 );
1367 }
1368 Some(vnode) => {
1370 let worker_slot_id = vnode_mapping[vnode];
1371 let (bitmap, scan_ranges) = partitions
1372 .entry(worker_slot_id)
1373 .or_insert_with(|| (BitmapBuilder::zeroed(vnode_count), vec![]));
1374 bitmap.set(vnode.to_index(), true);
1375 scan_ranges.push(scan_range.to_protobuf());
1376 }
1377 }
1378 }
1379
1380 Ok(partitions
1381 .into_iter()
1382 .map(|(k, (bitmap, scan_ranges))| {
1383 (
1384 k,
1385 TablePartitionInfo {
1386 vnode_bitmap: bitmap.finish(),
1387 scan_ranges,
1388 },
1389 )
1390 })
1391 .collect())
1392}
1393
1394#[cfg(test)]
1395mod tests {
1396 use std::collections::{HashMap, HashSet};
1397
1398 use risingwave_pb::batch_plan::plan_node::NodeBody;
1399
1400 use crate::optimizer::plan_node::PlanNodeType;
1401 use crate::scheduler::plan_fragmenter::StageId;
1402
1403 #[tokio::test]
1404 async fn test_fragmenter() {
1405 let query = crate::scheduler::distributed::tests::create_query().await;
1406
1407 assert_eq!(query.stage_graph.root_stage_id, 0);
1408 assert_eq!(query.stage_graph.stages.len(), 4);
1409
1410 assert_eq!(query.stage_graph.child_edges[&0], [1].into());
1412 assert_eq!(query.stage_graph.child_edges[&1], [2, 3].into());
1413 assert_eq!(query.stage_graph.child_edges[&2], HashSet::new());
1414 assert_eq!(query.stage_graph.child_edges[&3], HashSet::new());
1415
1416 assert_eq!(query.stage_graph.parent_edges[&0], HashSet::new());
1418 assert_eq!(query.stage_graph.parent_edges[&1], [0].into());
1419 assert_eq!(query.stage_graph.parent_edges[&2], [1].into());
1420 assert_eq!(query.stage_graph.parent_edges[&3], [1].into());
1421
1422 {
1424 let stage_id_to_pos: HashMap<StageId, usize> = query
1425 .stage_graph
1426 .stage_ids_by_topo_order()
1427 .enumerate()
1428 .map(|(pos, stage_id)| (stage_id, pos))
1429 .collect();
1430
1431 for stage_id in query.stage_graph.stages.keys() {
1432 let stage_pos = stage_id_to_pos[stage_id];
1433 for child_stage_id in &query.stage_graph.child_edges[stage_id] {
1434 let child_pos = stage_id_to_pos[child_stage_id];
1435 assert!(stage_pos > child_pos);
1436 }
1437 }
1438 }
1439
1440 let root_exchange = query.stage_graph.stages.get(&0).unwrap();
1442 assert_eq!(root_exchange.root.node_type(), PlanNodeType::BatchExchange);
1443 assert_eq!(root_exchange.root.source_stage_id, Some(1));
1444 assert!(matches!(root_exchange.root.node, NodeBody::Exchange(_)));
1445 assert_eq!(root_exchange.parallelism, Some(1));
1446 assert!(!root_exchange.has_table_scan());
1447
1448 let join_node = query.stage_graph.stages.get(&1).unwrap();
1449 assert_eq!(join_node.root.node_type(), PlanNodeType::BatchHashJoin);
1450 assert_eq!(join_node.parallelism, Some(24));
1451
1452 assert!(matches!(join_node.root.node, NodeBody::HashJoin(_)));
1453 assert_eq!(join_node.root.source_stage_id, None);
1454 assert_eq!(2, join_node.root.children.len());
1455
1456 assert!(matches!(
1457 join_node.root.children[0].node,
1458 NodeBody::Exchange(_)
1459 ));
1460 assert_eq!(join_node.root.children[0].source_stage_id, Some(2));
1461 assert_eq!(0, join_node.root.children[0].children.len());
1462
1463 assert!(matches!(
1464 join_node.root.children[1].node,
1465 NodeBody::Exchange(_)
1466 ));
1467 assert_eq!(join_node.root.children[1].source_stage_id, Some(3));
1468 assert_eq!(0, join_node.root.children[1].children.len());
1469 assert!(!join_node.has_table_scan());
1470
1471 let scan_node1 = query.stage_graph.stages.get(&2).unwrap();
1472 assert_eq!(scan_node1.root.node_type(), PlanNodeType::BatchSeqScan);
1473 assert_eq!(scan_node1.root.source_stage_id, None);
1474 assert_eq!(0, scan_node1.root.children.len());
1475 assert!(scan_node1.has_table_scan());
1476
1477 let scan_node2 = query.stage_graph.stages.get(&3).unwrap();
1478 assert_eq!(scan_node2.root.node_type(), PlanNodeType::BatchFilter);
1479 assert_eq!(scan_node2.root.source_stage_id, None);
1480 assert_eq!(1, scan_node2.root.children.len());
1481 assert!(scan_node2.has_table_scan());
1482 }
1483}