risingwave_frontend/utils/column_index_mapping.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::vec;
use fixedbitset::FixedBitSet;
pub use risingwave_common::util::column_index_mapping::ColIndexMapping;
use risingwave_common::util::sort_util::ColumnOrder;
use crate::expr::{Expr, ExprImpl, ExprRewriter, InputRef};
use crate::optimizer::property::{
Distribution, FunctionalDependency, FunctionalDependencySet, MonotonicityMap, Order,
RequiredDist,
};
/// Extension trait for [`ColIndexMapping`] to rewrite frontend structures.
#[easy_ext::ext(ColIndexMappingRewriteExt)]
impl ColIndexMapping {
/// Rewrite the provided order's column index. It will try its best to give the most accurate
/// order. Order(0,1,2) with mapping(0->1,1->0,2->2) will be rewritten to Order(1,0,2)
/// Order(0,1,2) with mapping(0->1,2->0) will be rewritten to Order(1)
pub fn rewrite_provided_order(&self, order: &Order) -> Order {
let mut mapped_column_orders = vec![];
for column_order in &order.column_orders {
match self.try_map(column_order.column_index) {
Some(mapped_index) => mapped_column_orders
.push(ColumnOrder::new(mapped_index, column_order.order_type)),
None => break,
}
}
Order {
column_orders: mapped_column_orders,
}
}
/// Rewrite the required order's field index. if it can't give a corresponding
/// required order after the column index mapping, it will return None.
/// Order(0,1,2) with mapping(0->1,1->0,2->2) will be rewritten to Order(1,0,2)
/// Order(0,1,2) with mapping(0->1,2->0) will return None
pub fn rewrite_required_order(&self, order: &Order) -> Option<Order> {
order
.column_orders
.iter()
.map(|o| {
self.try_map(o.column_index)
.map(|mapped_index| ColumnOrder::new(mapped_index, o.order_type))
})
.collect::<Option<Vec<_>>>()
.map(|mapped_column_orders| Order {
column_orders: mapped_column_orders,
})
}
/// Rewrite the distribution key and will return None if **any** index of the key disappear
/// after the mapping.
pub fn rewrite_dist_key(&self, key: &[usize]) -> Option<Vec<usize>> {
self.try_map_all(key.iter().copied())
}
/// Rewrite the provided distribution's field index. It will try its best to give the most
/// accurate distribution.
/// HashShard(0,1,2), with mapping(0->1,1->0,2->2) will be rewritten to HashShard(1,0,2).
/// HashShard(0,1,2), with mapping(0->1,2->0) will be rewritten to `SomeShard`.
pub fn rewrite_provided_distribution(&self, dist: &Distribution) -> Distribution {
let mapped_dist_key = self.rewrite_dist_key(dist.dist_column_indices());
match (mapped_dist_key, dist) {
(None, Distribution::HashShard(_)) | (None, Distribution::UpstreamHashShard(_, _)) => {
Distribution::SomeShard
}
(Some(mapped_dist_key), Distribution::HashShard(_)) => {
Distribution::HashShard(mapped_dist_key)
}
(Some(mapped_dist_key), Distribution::UpstreamHashShard(_, table_id)) => {
Distribution::UpstreamHashShard(mapped_dist_key, *table_id)
}
_ => {
assert!(dist.dist_column_indices().is_empty());
dist.clone()
}
}
}
/// Rewrite the required distribution's field index. if it can't give a corresponding
/// required distribution after the column index mapping, it will return None.
/// ShardByKey(0,1,2), with mapping(0->1,1->0,2->2) will be rewritten to ShardByKey(1,0,2).
/// ShardByKey(0,1,2), with mapping(0->1,2->0) will return ShardByKey(1,0).
/// ShardByKey(0,1), with mapping(2->0) will return `Any`.
pub fn rewrite_required_distribution(&self, dist: &RequiredDist) -> RequiredDist {
match dist {
RequiredDist::ShardByKey(keys) => {
assert!(!keys.is_clear());
let keys = self.rewrite_bitset(keys);
if keys.count_ones(..) == 0 {
RequiredDist::Any
} else {
RequiredDist::ShardByKey(keys)
}
}
RequiredDist::PhysicalDist(dist) => match dist {
Distribution::HashShard(keys) => {
assert!(!keys.is_empty());
let keys = self.rewrite_dist_key(keys);
match keys {
Some(keys) => RequiredDist::PhysicalDist(Distribution::HashShard(keys)),
None => RequiredDist::Any,
}
}
Distribution::UpstreamHashShard(keys, table_id) => {
assert!(!keys.is_empty());
let keys = self.rewrite_dist_key(keys);
match keys {
Some(keys) => RequiredDist::PhysicalDist(Distribution::UpstreamHashShard(
keys, *table_id,
)),
None => RequiredDist::Any,
}
}
Distribution::Single => RequiredDist::PhysicalDist(Distribution::Single),
Distribution::Broadcast => RequiredDist::PhysicalDist(Distribution::Broadcast),
Distribution::SomeShard => RequiredDist::PhysicalDist(Distribution::SomeShard),
},
RequiredDist::Any => RequiredDist::Any,
RequiredDist::AnyShard => RequiredDist::AnyShard,
}
}
/// Rewrite the indices in a functional dependency.
///
/// If some columns in the `from` side are removed, then this fd is no longer valid. For
/// example, for ABC --> D, it means that A, B, and C together can determine C. But if B is
/// removed, this fd is not valid. For this case, we will return [`None`]
///
/// Additionally, If the `to` side of a functional dependency becomes empty after rewriting, it
/// means that this dependency is unneeded so we also return [`None`].
pub fn rewrite_functional_dependency(
&self,
fd: &FunctionalDependency,
) -> Option<FunctionalDependency> {
let new_from = self.rewrite_bitset(fd.from());
let new_to = self.rewrite_bitset(fd.to());
if new_from.count_ones(..) != fd.from().count_ones(..) || new_to.is_clear() {
None
} else {
Some(FunctionalDependency::new(new_from, new_to))
}
}
/// Rewrite functional dependencies in `fd_set` one by one, using
/// `[ColIndexMapping::rewrite_functional_dependency]`.
///
/// Note that this rewrite process handles each function dependency independently.
/// Relationships within function dependencies are not considered.
/// For example, if we have `fd_set` { AB --> C, A --> B }, and column B is removed.
/// The result would be an empty `fd_set`, rather than { A --> C }.
pub fn rewrite_functional_dependency_set(
&self,
fd_set: FunctionalDependencySet,
) -> FunctionalDependencySet {
let mut new_fd_set = FunctionalDependencySet::new(self.target_size());
for i in fd_set.into_dependencies() {
if let Some(fd) = self.rewrite_functional_dependency(&i) {
new_fd_set.add_functional_dependency(fd);
}
}
new_fd_set
}
pub fn rewrite_bitset(&self, bitset: &FixedBitSet) -> FixedBitSet {
assert_eq!(bitset.len(), self.source_size());
let mut ret = FixedBitSet::with_capacity(self.target_size());
for i in bitset.ones() {
if let Some(i) = self.try_map(i) {
ret.insert(i);
}
}
ret
}
pub fn rewrite_monotonicity_map(&self, map: &MonotonicityMap) -> MonotonicityMap {
let mut new_map = MonotonicityMap::new();
for (i, monotonicity) in map.iter() {
if let Some(mapped_i) = self.try_map(i) {
new_map.insert(mapped_i, monotonicity);
}
}
new_map
}
}
impl ExprRewriter for ColIndexMapping {
fn rewrite_input_ref(&mut self, input_ref: InputRef) -> ExprImpl {
InputRef::new(self.map(input_ref.index()), input_ref.return_type()).into()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_rewrite_fd() {
let mapping = ColIndexMapping::with_remaining_columns(&[1, 0], 4);
let new_fd = |from, to| FunctionalDependency::with_indices(4, from, to);
let fds_with_expected_res = vec![
(new_fd(&[0, 1], &[2, 3]), None),
(new_fd(&[2], &[0, 1]), None),
(
new_fd(&[1], &[0]),
Some(FunctionalDependency::with_indices(2, &[0], &[1])),
),
];
for (input, expected) in fds_with_expected_res {
assert_eq!(mapping.rewrite_functional_dependency(&input), expected);
}
}
#[test]
fn test_rewrite_fd_set() {
let new_fd = |from, to| FunctionalDependency::with_indices(4, from, to);
let fd_set = FunctionalDependencySet::with_dependencies(
4,
vec![
// removed
new_fd(&[0, 1], &[2, 3]),
new_fd(&[2], &[0, 1]),
new_fd(&[0, 1, 2], &[3]),
// empty mappings will be removed
new_fd(&[], &[]),
new_fd(&[1], &[]),
// constant column mapping will be kept
new_fd(&[], &[0]),
// kept
new_fd(&[1], &[0]),
],
);
let mapping = ColIndexMapping::with_remaining_columns(&[1, 0], 4);
let result = mapping.rewrite_functional_dependency_set(fd_set);
let expected = FunctionalDependencySet::with_dependencies(
2,
vec![
FunctionalDependency::with_indices(2, &[], &[1]),
FunctionalDependency::with_indices(2, &[0], &[1]),
],
);
assert_eq!(result, expected);
}
}