risingwave_frontend/utils/
condition.rs

1// Copyright 2025 RisingWave Labs
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15use std::cmp::Ordering;
16use std::collections::{BTreeMap, HashSet};
17use std::fmt::{self, Debug};
18use std::ops::Bound;
19use std::rc::Rc;
20use std::sync::LazyLock;
21
22use fixedbitset::FixedBitSet;
23use itertools::Itertools;
24use risingwave_common::catalog::{Schema, TableDesc};
25use risingwave_common::types::{DataType, DefaultOrd, ScalarImpl};
26use risingwave_common::util::iter_util::ZipEqFast;
27use risingwave_common::util::scan_range::{ScanRange, is_full_range};
28use risingwave_common::util::sort_util::{OrderType, cmp_rows};
29
30use crate::error::Result;
31use crate::expr::{
32    ExprDisplay, ExprImpl, ExprMutator, ExprRewriter, ExprType, ExprVisitor, FunctionCall,
33    InequalityInputPair, InputRef, collect_input_refs, column_self_eq_eliminate,
34    factorization_expr, fold_boolean_constant, push_down_not, to_conjunctions,
35    try_get_bool_constant,
36};
37use crate::utils::condition::cast_compare::{ResultForCmp, ResultForEq};
38
39#[derive(Debug, Clone, PartialEq, Eq, Hash)]
40pub struct Condition {
41    /// Condition expressions in conjunction form (combined with `AND`)
42    pub conjunctions: Vec<ExprImpl>,
43}
44
45impl IntoIterator for Condition {
46    type IntoIter = std::vec::IntoIter<ExprImpl>;
47    type Item = ExprImpl;
48
49    fn into_iter(self) -> Self::IntoIter {
50        self.conjunctions.into_iter()
51    }
52}
53
54impl fmt::Display for Condition {
55    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
56        let mut conjunctions = self.conjunctions.iter();
57        if let Some(expr) = conjunctions.next() {
58            write!(f, "{:?}", expr)?;
59        }
60        if self.always_true() {
61            write!(f, "true")?;
62        } else {
63            for expr in conjunctions {
64                write!(f, " AND {:?}", expr)?;
65            }
66        }
67        Ok(())
68    }
69}
70
71impl Condition {
72    pub fn with_expr(expr: ExprImpl) -> Self {
73        let conjunctions = to_conjunctions(expr);
74
75        Self { conjunctions }.simplify()
76    }
77
78    pub fn true_cond() -> Self {
79        Self {
80            conjunctions: vec![],
81        }
82    }
83
84    pub fn false_cond() -> Self {
85        Self {
86            conjunctions: vec![ExprImpl::literal_bool(false)],
87        }
88    }
89
90    pub fn always_true(&self) -> bool {
91        self.conjunctions.is_empty()
92    }
93
94    pub fn always_false(&self) -> bool {
95        static FALSE: LazyLock<ExprImpl> = LazyLock::new(|| ExprImpl::literal_bool(false));
96        // There is at least one conjunction that is false.
97        !self.conjunctions.is_empty() && self.conjunctions.contains(&*FALSE)
98    }
99
100    /// Convert condition to an expression. If always true, return `None`.
101    pub fn as_expr_unless_true(&self) -> Option<ExprImpl> {
102        if self.always_true() {
103            None
104        } else {
105            Some(self.clone().into())
106        }
107    }
108
109    #[must_use]
110    pub fn and(self, other: Self) -> Self {
111        let mut ret = self;
112        ret.conjunctions.extend(other.conjunctions);
113        ret.simplify()
114    }
115
116    #[must_use]
117    pub fn or(self, other: Self) -> Self {
118        let or_expr = ExprImpl::FunctionCall(
119            FunctionCall::new_unchecked(
120                ExprType::Or,
121                vec![self.into(), other.into()],
122                DataType::Boolean,
123            )
124            .into(),
125        );
126        let ret = Self::with_expr(or_expr);
127        ret.simplify()
128    }
129
130    /// Split the condition expressions into 3 groups: left, right and others
131    #[must_use]
132    pub fn split(self, left_col_num: usize, right_col_num: usize) -> (Self, Self, Self) {
133        let left_bit_map = FixedBitSet::from_iter(0..left_col_num);
134        let right_bit_map = FixedBitSet::from_iter(left_col_num..left_col_num + right_col_num);
135
136        self.group_by::<_, 3>(|expr| {
137            let input_bits = expr.collect_input_refs(left_col_num + right_col_num);
138            if input_bits.is_subset(&left_bit_map) {
139                0
140            } else if input_bits.is_subset(&right_bit_map) {
141                1
142            } else {
143                2
144            }
145        })
146        .into_iter()
147        .next_tuple()
148        .unwrap()
149    }
150
151    /// Collect all `InputRef`s' indexes in the expressions.
152    ///
153    /// # Panics
154    /// Panics if `input_ref >= input_col_num`.
155    pub fn collect_input_refs(&self, input_col_num: usize) -> FixedBitSet {
156        collect_input_refs(input_col_num, &self.conjunctions)
157    }
158
159    /// Split the condition expressions into (N choose 2) + 1 groups: those containing two columns
160    /// from different buckets (and optionally, needing an equal condition between them), and
161    /// others.
162    ///
163    /// `input_num_cols` are the number of columns in each of the input buckets. For instance, with
164    /// bucket0: col0, col1, col2 | bucket1: col3, col4 | bucket2: col5
165    /// `input_num_cols` = [3, 2, 1]
166    ///
167    /// Returns hashmap with keys of the form (col1, col2) where col1 < col2 in terms of their col
168    /// index.
169    ///
170    /// `only_eq`: whether to only split those conditions with an eq condition predicate between two
171    /// buckets.
172    #[must_use]
173    pub fn split_by_input_col_nums(
174        self,
175        input_col_nums: &[usize],
176        only_eq: bool,
177    ) -> (BTreeMap<(usize, usize), Self>, Self) {
178        let mut bitmaps = Vec::with_capacity(input_col_nums.len());
179        let mut cols_seen = 0;
180        for cols in input_col_nums {
181            bitmaps.push(FixedBitSet::from_iter(cols_seen..cols_seen + cols));
182            cols_seen += cols;
183        }
184
185        let mut pairwise_conditions = BTreeMap::new();
186        let mut non_eq_join = vec![];
187
188        for expr in self.conjunctions {
189            let input_bits = expr.collect_input_refs(cols_seen);
190            let mut subset_indices = Vec::with_capacity(input_col_nums.len());
191            for (idx, bitmap) in bitmaps.iter().enumerate() {
192                if !input_bits.is_disjoint(bitmap) {
193                    subset_indices.push(idx);
194                }
195            }
196            if subset_indices.len() != 2 || (only_eq && expr.as_eq_cond().is_none()) {
197                non_eq_join.push(expr);
198            } else {
199                // The key has the canonical ordering (lower, higher)
200                let key = if subset_indices[0] < subset_indices[1] {
201                    (subset_indices[0], subset_indices[1])
202                } else {
203                    (subset_indices[1], subset_indices[0])
204                };
205                let e = pairwise_conditions
206                    .entry(key)
207                    .or_insert_with(Condition::true_cond);
208                e.conjunctions.push(expr);
209            }
210        }
211        (
212            pairwise_conditions,
213            Condition {
214                conjunctions: non_eq_join,
215            },
216        )
217    }
218
219    #[must_use]
220    /// For [`EqJoinPredicate`], separate equality conditions which connect left columns and right
221    /// columns from other conditions.
222    ///
223    /// The equality conditions are transformed into `(left_col_id, right_col_id)` pairs.
224    ///
225    /// [`EqJoinPredicate`]: crate::optimizer::plan_node::EqJoinPredicate
226    pub fn split_eq_keys(
227        self,
228        left_col_num: usize,
229        right_col_num: usize,
230    ) -> (Vec<(InputRef, InputRef, bool)>, Self) {
231        let left_bit_map = FixedBitSet::from_iter(0..left_col_num);
232        let right_bit_map = FixedBitSet::from_iter(left_col_num..left_col_num + right_col_num);
233
234        let (mut eq_keys, mut others) = (vec![], vec![]);
235        self.conjunctions.into_iter().for_each(|expr| {
236            let input_bits = expr.collect_input_refs(left_col_num + right_col_num);
237            if input_bits.is_disjoint(&left_bit_map) || input_bits.is_disjoint(&right_bit_map) {
238                others.push(expr)
239            } else if let Some(columns) = expr.as_eq_cond() {
240                eq_keys.push((columns.0, columns.1, false));
241            } else if let Some(columns) = expr.as_is_not_distinct_from_cond() {
242                eq_keys.push((columns.0, columns.1, true));
243            } else {
244                others.push(expr)
245            }
246        });
247
248        (
249            eq_keys,
250            Condition {
251                conjunctions: others,
252            },
253        )
254    }
255
256    /// For [`EqJoinPredicate`], extract inequality conditions which connect left columns and right
257    /// columns from other conditions.
258    ///
259    /// The inequality conditions are transformed into `(left_col_id, right_col_id, offset)` pairs.
260    ///
261    /// [`EqJoinPredicate`]: crate::optimizer::plan_node::EqJoinPredicate
262    pub(crate) fn extract_inequality_keys(
263        &self,
264        left_col_num: usize,
265        right_col_num: usize,
266    ) -> Vec<(usize, InequalityInputPair)> {
267        let left_bit_map = FixedBitSet::from_iter(0..left_col_num);
268        let right_bit_map = FixedBitSet::from_iter(left_col_num..left_col_num + right_col_num);
269
270        self.conjunctions
271            .iter()
272            .enumerate()
273            .filter_map(|(conjunction_idx, expr)| {
274                let input_bits = expr.collect_input_refs(left_col_num + right_col_num);
275                if input_bits.is_disjoint(&left_bit_map) || input_bits.is_disjoint(&right_bit_map) {
276                    None
277                } else {
278                    expr.as_input_comparison_cond()
279                        .map(|inequality_pair| (conjunction_idx, inequality_pair))
280                }
281            })
282            .collect_vec()
283    }
284
285    /// Split the condition expressions into 2 groups: those referencing `columns` and others which
286    /// are disjoint with columns.
287    #[must_use]
288    pub fn split_disjoint(self, columns: &FixedBitSet) -> (Self, Self) {
289        self.group_by::<_, 2>(|expr| {
290            let input_bits = expr.collect_input_refs(columns.len());
291            input_bits.is_disjoint(columns) as usize
292        })
293        .into_iter()
294        .next_tuple()
295        .unwrap()
296    }
297
298    /// Generate range scans from each arm of `OR` clause and merge them.
299    /// Currently, only support equal type range scans.
300    /// Keep in mind that range scans can not overlap, otherwise duplicate rows will occur.
301    fn disjunctions_to_scan_ranges(
302        table_desc: Rc<TableDesc>,
303        max_split_range_gap: u64,
304        disjunctions: Vec<ExprImpl>,
305    ) -> Result<Option<(Vec<ScanRange>, bool)>> {
306        let disjunctions_result: Result<Vec<(Vec<ScanRange>, Self)>> = disjunctions
307            .into_iter()
308            .map(|x| {
309                Condition {
310                    conjunctions: to_conjunctions(x),
311                }
312                .split_to_scan_ranges(table_desc.clone(), max_split_range_gap)
313            })
314            .collect();
315
316        // If any arm of `OR` clause fails, bail out.
317        let disjunctions_result = disjunctions_result?;
318
319        // If all arms of `OR` clause scan ranges are simply equal condition type, merge all
320        // of them.
321        let all_equal = disjunctions_result
322            .iter()
323            .all(|(scan_ranges, other_condition)| {
324                other_condition.always_true()
325                    && scan_ranges
326                        .iter()
327                        .all(|x| !x.eq_conds.is_empty() && is_full_range(&x.range))
328            });
329
330        if all_equal {
331            // Think about the case (a = 1) or (a = 1 and b = 2).
332            // We should only keep the large one range scan a = 1, because a = 1 overlaps with
333            // (a = 1 and b = 2).
334            let scan_ranges = disjunctions_result
335                .into_iter()
336                .flat_map(|(scan_ranges, _)| scan_ranges)
337                // sort, large one first
338                .sorted_by(|a, b| a.eq_conds.len().cmp(&b.eq_conds.len()))
339                .collect_vec();
340            // Make sure each range never overlaps with others, that's what scan range mean.
341            let mut non_overlap_scan_ranges: Vec<ScanRange> = vec![];
342            for s1 in &scan_ranges {
343                let overlap = non_overlap_scan_ranges.iter().any(|s2| {
344                    #[allow(clippy::disallowed_methods)]
345                    s1.eq_conds
346                        .iter()
347                        .zip(s2.eq_conds.iter())
348                        .all(|(a, b)| a == b)
349                });
350                // If overlap happens, keep the large one and large one always in
351                // `non_overlap_scan_ranges`.
352                // Otherwise, put s1 into `non_overlap_scan_ranges`.
353                if !overlap {
354                    non_overlap_scan_ranges.push(s1.clone());
355                }
356            }
357
358            Ok(Some((non_overlap_scan_ranges, false)))
359        } else {
360            let mut scan_ranges = vec![];
361            for (scan_ranges_chunk, _) in disjunctions_result {
362                if scan_ranges_chunk.is_empty() {
363                    // full scan range
364                    return Ok(None);
365                }
366
367                scan_ranges.extend(scan_ranges_chunk);
368            }
369
370            let order_types = table_desc
371                .pk
372                .iter()
373                .cloned()
374                .map(|x| {
375                    if x.order_type.is_descending() {
376                        x.order_type.reverse()
377                    } else {
378                        x.order_type
379                    }
380                })
381                .collect_vec();
382            scan_ranges.sort_by(|left, right| {
383                let (left_start, _left_end) = &left.convert_to_range();
384                let (right_start, _right_end) = &right.convert_to_range();
385
386                let left_start_vec = match &left_start {
387                    Bound::Included(vec) | Bound::Excluded(vec) => vec,
388                    _ => &vec![],
389                };
390                let right_start_vec = match &right_start {
391                    Bound::Included(vec) | Bound::Excluded(vec) => vec,
392                    _ => &vec![],
393                };
394
395                if left_start_vec.is_empty() && right_start_vec.is_empty() {
396                    return Ordering::Less;
397                }
398
399                if left_start_vec.is_empty() {
400                    return Ordering::Less;
401                }
402
403                if right_start_vec.is_empty() {
404                    return Ordering::Greater;
405                }
406
407                let cmp_column_len = left_start_vec.len().min(right_start_vec.len());
408                cmp_rows(
409                    &left_start_vec[0..cmp_column_len],
410                    &right_start_vec[0..cmp_column_len],
411                    &order_types[0..cmp_column_len],
412                )
413            });
414
415            if scan_ranges.is_empty() {
416                return Ok(None);
417            }
418
419            if scan_ranges.len() == 1 {
420                return Ok(Some((scan_ranges, true)));
421            }
422
423            let mut output_scan_ranges: Vec<ScanRange> = vec![];
424            output_scan_ranges.push(scan_ranges[0].clone());
425            let mut idx = 1;
426            loop {
427                if idx >= scan_ranges.len() {
428                    break;
429                }
430
431                let scan_range_left = output_scan_ranges.last_mut().unwrap();
432                let scan_range_right = &scan_ranges[idx];
433
434                if scan_range_left.eq_conds == scan_range_right.eq_conds {
435                    // range merge
436
437                    if !ScanRange::is_overlap(scan_range_left, scan_range_right, &order_types) {
438                        // not merge
439                        output_scan_ranges.push(scan_range_right.clone());
440                        idx += 1;
441                        continue;
442                    }
443
444                    // merge range
445                    fn merge_bound(
446                        left_scan_range: &Bound<Vec<Option<ScalarImpl>>>,
447                        right_scan_range: &Bound<Vec<Option<ScalarImpl>>>,
448                        order_types: &[OrderType],
449                        left_bound: bool,
450                    ) -> Bound<Vec<Option<ScalarImpl>>> {
451                        let left_scan_range = match left_scan_range {
452                            Bound::Included(vec) | Bound::Excluded(vec) => vec,
453                            Bound::Unbounded => return Bound::Unbounded,
454                        };
455
456                        let right_scan_range = match right_scan_range {
457                            Bound::Included(vec) | Bound::Excluded(vec) => vec,
458                            Bound::Unbounded => return Bound::Unbounded,
459                        };
460
461                        let cmp_len = left_scan_range.len().min(right_scan_range.len());
462
463                        let cmp = cmp_rows(
464                            &left_scan_range[..cmp_len],
465                            &right_scan_range[..cmp_len],
466                            &order_types[..cmp_len],
467                        );
468
469                        let bound = {
470                            if (cmp.is_le() && left_bound) || (cmp.is_ge() && !left_bound) {
471                                left_scan_range.to_vec()
472                            } else {
473                                right_scan_range.to_vec()
474                            }
475                        };
476
477                        // Included Bound just for convenience, the correctness will be guaranteed by the upper level filter.
478                        Bound::Included(bound)
479                    }
480
481                    scan_range_left.range.0 = merge_bound(
482                        &scan_range_left.range.0,
483                        &scan_range_right.range.0,
484                        &order_types,
485                        true,
486                    );
487
488                    scan_range_left.range.1 = merge_bound(
489                        &scan_range_left.range.1,
490                        &scan_range_right.range.1,
491                        &order_types,
492                        false,
493                    );
494
495                    if scan_range_left.is_full_table_scan() {
496                        return Ok(None);
497                    }
498                } else {
499                    output_scan_ranges.push(scan_range_right.clone());
500                }
501
502                idx += 1;
503            }
504
505            Ok(Some((output_scan_ranges, true)))
506        }
507    }
508
509    fn split_row_cmp_to_scan_ranges(
510        &self,
511        table_desc: Rc<TableDesc>,
512    ) -> Result<Option<(Vec<ScanRange>, Self)>> {
513        let (mut row_conjunctions, row_conjunctions_without_struct): (Vec<_>, Vec<_>) =
514            self.conjunctions.clone().into_iter().partition(|expr| {
515                if let Some(f) = expr.as_function_call() {
516                    if let Some(left_input) = f.inputs().get(0)
517                        && let Some(left_input) = left_input.as_function_call()
518                        && matches!(left_input.func_type(), ExprType::Row)
519                        && left_input.inputs().iter().all(|x| x.is_input_ref())
520                        && let Some(right_input) = f.inputs().get(1)
521                        && right_input.is_literal()
522                    {
523                        true
524                    } else {
525                        false
526                    }
527                } else {
528                    false
529                }
530            });
531        // optimize for single row conjunctions. More optimisations may come later
532        // For example, (v1,v2,v3) > (1, 2, 3) means all data from (1, 2, 3).
533        // Suppose v1 v2 v3 are both pk, we can push (v1,v2,v3)> (1,2,3) down to scan
534        // Suppose v1 v2 are both pk, we can push (v1,v2)> (1,2) down to scan and add (v1,v2,v3) > (1,2,3) in filter, it is still possible to reduce the value of scan
535        if row_conjunctions.len() == 1 {
536            let row_conjunction = row_conjunctions.pop().unwrap();
537            let row_left_inputs = row_conjunction
538                .as_function_call()
539                .unwrap()
540                .inputs()
541                .get(0)
542                .unwrap()
543                .as_function_call()
544                .unwrap()
545                .inputs();
546            let row_right_literal = row_conjunction
547                .as_function_call()
548                .unwrap()
549                .inputs()
550                .get(1)
551                .unwrap()
552                .as_literal()
553                .unwrap();
554            if !matches!(row_right_literal.get_data(), Some(ScalarImpl::Struct(_))) {
555                return Ok(None);
556            }
557            let row_right_literal_data = row_right_literal.get_data().clone().unwrap();
558            let right_iter = row_right_literal_data.as_struct().fields();
559            let func_type = row_conjunction.as_function_call().unwrap().func_type();
560            if row_left_inputs.len() > 1
561                && (matches!(func_type, ExprType::LessThan)
562                    || matches!(func_type, ExprType::GreaterThan))
563            {
564                let mut pk_struct = vec![];
565                let mut order_type = None;
566                let mut all_added = true;
567                let mut iter = row_left_inputs.iter().zip_eq_fast(right_iter);
568                for column_order in &table_desc.pk {
569                    if let Some((left_expr, right_expr)) = iter.next() {
570                        if left_expr.as_input_ref().unwrap().index != column_order.column_index {
571                            all_added = false;
572                            break;
573                        }
574                        match order_type {
575                            Some(o) => {
576                                if o != column_order.order_type {
577                                    all_added = false;
578                                    break;
579                                }
580                            }
581                            None => order_type = Some(column_order.order_type),
582                        }
583                        pk_struct.push(right_expr.clone());
584                    }
585                }
586
587                // Here it is necessary to determine whether all of row is included in the `ScanRanges`, if so, the data for eq is not needed
588                if !pk_struct.is_empty() {
589                    if !all_added {
590                        let scan_range = ScanRange {
591                            eq_conds: vec![],
592                            range: match func_type {
593                                ExprType::GreaterThan => {
594                                    (Bound::Included(pk_struct), Bound::Unbounded)
595                                }
596                                ExprType::LessThan => {
597                                    (Bound::Unbounded, Bound::Included(pk_struct))
598                                }
599                                _ => unreachable!(),
600                            },
601                        };
602                        return Ok(Some((
603                            vec![scan_range],
604                            Condition {
605                                conjunctions: self.conjunctions.clone(),
606                            },
607                        )));
608                    } else {
609                        let scan_range = ScanRange {
610                            eq_conds: vec![],
611                            range: match func_type {
612                                ExprType::GreaterThan => {
613                                    (Bound::Excluded(pk_struct), Bound::Unbounded)
614                                }
615                                ExprType::LessThan => {
616                                    (Bound::Unbounded, Bound::Excluded(pk_struct))
617                                }
618                                _ => unreachable!(),
619                            },
620                        };
621                        return Ok(Some((
622                            vec![scan_range],
623                            Condition {
624                                conjunctions: row_conjunctions_without_struct,
625                            },
626                        )));
627                    }
628                }
629            }
630        }
631        Ok(None)
632    }
633
634    /// x = 1 AND y = 2 AND z = 3 => [x, y, z]
635    pub fn get_eq_const_input_refs(&self) -> Vec<InputRef> {
636        self.conjunctions
637            .iter()
638            .filter_map(|expr| expr.as_eq_const().map(|(input_ref, _)| input_ref))
639            .collect()
640    }
641
642    /// See also [`ScanRange`](risingwave_pb::batch_plan::ScanRange).
643    pub fn split_to_scan_ranges(
644        self,
645        table_desc: Rc<TableDesc>,
646        max_split_range_gap: u64,
647    ) -> Result<(Vec<ScanRange>, Self)> {
648        fn false_cond() -> (Vec<ScanRange>, Condition) {
649            (vec![], Condition::false_cond())
650        }
651
652        // It's an OR.
653        if self.conjunctions.len() == 1
654            && let Some(disjunctions) = self.conjunctions[0].as_or_disjunctions()
655        {
656            if let Some((scan_ranges, maintaining_condition)) =
657                Self::disjunctions_to_scan_ranges(table_desc, max_split_range_gap, disjunctions)?
658            {
659                if maintaining_condition {
660                    return Ok((scan_ranges, self));
661                } else {
662                    return Ok((scan_ranges, Condition::true_cond()));
663                }
664            } else {
665                return Ok((vec![], self));
666            }
667        }
668        if let Some((scan_ranges, other_condition)) =
669            self.split_row_cmp_to_scan_ranges(table_desc.clone())?
670        {
671            return Ok((scan_ranges, other_condition));
672        }
673
674        let mut groups = Self::classify_conjunctions_by_pk(self.conjunctions, &table_desc);
675        let mut other_conds = groups.pop().unwrap();
676
677        // Analyze each group and use result to update scan range.
678        let mut scan_range = ScanRange::full_table_scan();
679        for i in 0..table_desc.order_column_indices().len() {
680            let group = std::mem::take(&mut groups[i]);
681            if group.is_empty() {
682                groups.push(other_conds);
683                return Ok((
684                    if scan_range.is_full_table_scan() {
685                        vec![]
686                    } else {
687                        vec![scan_range]
688                    },
689                    Self {
690                        conjunctions: groups[i + 1..].concat(),
691                    },
692                ));
693            }
694
695            let Some((
696                lower_bound_conjunctions,
697                upper_bound_conjunctions,
698                eq_conds,
699                part_of_other_conds,
700            )) = Self::analyze_group(group)?
701            else {
702                return Ok(false_cond());
703            };
704            other_conds.extend(part_of_other_conds.into_iter());
705
706            let lower_bound = Self::merge_lower_bound_conjunctions(lower_bound_conjunctions);
707            let upper_bound = Self::merge_upper_bound_conjunctions(upper_bound_conjunctions);
708
709            if Self::is_invalid_range(&lower_bound, &upper_bound) {
710                return Ok(false_cond());
711            }
712
713            // update scan_range
714            match eq_conds.len() {
715                1 => {
716                    let eq_conds =
717                        Self::extract_eq_conds_within_range(eq_conds, &upper_bound, &lower_bound);
718                    if eq_conds.is_empty() {
719                        return Ok(false_cond());
720                    }
721                    scan_range.eq_conds.extend(eq_conds.into_iter());
722                }
723                0 => {
724                    let convert = |bound| match bound {
725                        Bound::Included(l) => Bound::Included(vec![Some(l)]),
726                        Bound::Excluded(l) => Bound::Excluded(vec![Some(l)]),
727                        Bound::Unbounded => Bound::Unbounded,
728                    };
729                    scan_range.range = (convert(lower_bound), convert(upper_bound));
730                    other_conds.extend(groups[i + 1..].iter().flatten().cloned());
731                    break;
732                }
733                _ => {
734                    // currently we will split IN list to multiple scan ranges immediately
735                    // i.e., a = 1 AND b in (1,2) is handled
736                    // TODO:
737                    // a in (1,2) AND b = 1
738                    // a in (1,2) AND b in (1,2)
739                    // a in (1,2) AND b > 1
740                    let eq_conds =
741                        Self::extract_eq_conds_within_range(eq_conds, &upper_bound, &lower_bound);
742                    if eq_conds.is_empty() {
743                        return Ok(false_cond());
744                    }
745                    other_conds.extend(groups[i + 1..].iter().flatten().cloned());
746                    let scan_ranges = eq_conds
747                        .into_iter()
748                        .map(|lit| {
749                            let mut scan_range = scan_range.clone();
750                            scan_range.eq_conds.push(lit);
751                            scan_range
752                        })
753                        .collect();
754                    return Ok((
755                        scan_ranges,
756                        Self {
757                            conjunctions: other_conds,
758                        },
759                    ));
760                }
761            }
762        }
763
764        Ok((
765            if scan_range.is_full_table_scan() {
766                vec![]
767            } else if table_desc.columns[table_desc.order_column_indices()[0]]
768                .data_type
769                .is_int()
770            {
771                match scan_range.split_small_range(max_split_range_gap) {
772                    Some(scan_ranges) => scan_ranges,
773                    None => vec![scan_range],
774                }
775            } else {
776                vec![scan_range]
777            },
778            Self {
779                conjunctions: other_conds,
780            },
781        ))
782    }
783
784    /// classify conjunctions into groups:
785    /// The i-th group has exprs that only reference the i-th PK column.
786    /// The last group contains all the other exprs.
787    fn classify_conjunctions_by_pk(
788        conjunctions: Vec<ExprImpl>,
789        table_desc: &Rc<TableDesc>,
790    ) -> Vec<Vec<ExprImpl>> {
791        let pk_column_ids = &table_desc.order_column_indices();
792        let pk_cols_num = pk_column_ids.len();
793        let cols_num = table_desc.columns.len();
794
795        let mut col_idx_to_pk_idx = vec![None; cols_num];
796        pk_column_ids.iter().enumerate().for_each(|(idx, pk_idx)| {
797            col_idx_to_pk_idx[*pk_idx] = Some(idx);
798        });
799
800        let mut groups = vec![vec![]; pk_cols_num + 1];
801        for (key, group) in &conjunctions.into_iter().chunk_by(|expr| {
802            let input_bits = expr.collect_input_refs(cols_num);
803            if input_bits.count_ones(..) == 1 {
804                let col_idx = input_bits.ones().next().unwrap();
805                col_idx_to_pk_idx[col_idx].unwrap_or(pk_cols_num)
806            } else {
807                pk_cols_num
808            }
809        }) {
810            groups[key].extend(group);
811        }
812
813        groups
814    }
815
816    /// Extract the following information in a group of conjunctions:
817    /// 1. lower bound conjunctions
818    /// 2. upper bound conjunctions
819    /// 3. eq conditions
820    /// 4. other conditions
821    ///
822    /// return None indicates that this conjunctions is always false
823    #[allow(clippy::type_complexity)]
824    fn analyze_group(
825        group: Vec<ExprImpl>,
826    ) -> Result<
827        Option<(
828            Vec<Bound<ScalarImpl>>,
829            Vec<Bound<ScalarImpl>>,
830            Vec<Option<ScalarImpl>>,
831            Vec<ExprImpl>,
832        )>,
833    > {
834        let mut lower_bound_conjunctions = vec![];
835        let mut upper_bound_conjunctions = vec![];
836        // values in eq_cond are OR'ed
837        let mut eq_conds = vec![];
838        let mut other_conds = vec![];
839
840        // analyze exprs in the group. scan_range is not updated
841        for expr in group {
842            if let Some((input_ref, const_expr)) = expr.as_eq_const() {
843                let new_expr = if let Ok(expr) = const_expr
844                    .clone()
845                    .cast_implicit(input_ref.data_type.clone())
846                {
847                    expr
848                } else {
849                    match self::cast_compare::cast_compare_for_eq(const_expr, input_ref.data_type) {
850                        Ok(ResultForEq::Success(expr)) => expr,
851                        Ok(ResultForEq::NeverEqual) => {
852                            return Ok(None);
853                        }
854                        Err(_) => {
855                            other_conds.push(expr);
856                            continue;
857                        }
858                    }
859                };
860
861                let Some(new_cond) = new_expr.fold_const()? else {
862                    // column = NULL, the result is always NULL.
863                    return Ok(None);
864                };
865                if Self::mutual_exclusive_with_eq_conds(&new_cond, &eq_conds) {
866                    return Ok(None);
867                }
868                eq_conds = vec![Some(new_cond)];
869            } else if expr.as_is_null().is_some() {
870                if !eq_conds.is_empty() && eq_conds.into_iter().all(|l| l.is_some()) {
871                    return Ok(None);
872                }
873                eq_conds = vec![None];
874            } else if let Some((input_ref, in_const_list)) = expr.as_in_const_list() {
875                let mut scalars = HashSet::new();
876                for const_expr in in_const_list {
877                    // The cast should succeed, because otherwise the input_ref is casted
878                    // and thus `as_in_const_list` returns None.
879                    let const_expr = const_expr
880                        .cast_implicit(input_ref.data_type.clone())
881                        .unwrap();
882                    let value = const_expr.fold_const()?;
883                    let Some(value) = value else {
884                        continue;
885                    };
886                    scalars.insert(Some(value));
887                }
888                if scalars.is_empty() {
889                    // There're only NULLs in the in-list
890                    return Ok(None);
891                }
892                if !eq_conds.is_empty() {
893                    scalars = scalars
894                        .intersection(&HashSet::from_iter(eq_conds))
895                        .cloned()
896                        .collect();
897                    if scalars.is_empty() {
898                        return Ok(None);
899                    }
900                }
901                // Sort to ensure a deterministic result for planner test.
902                eq_conds = scalars
903                    .into_iter()
904                    .sorted_by(DefaultOrd::default_cmp)
905                    .collect();
906            } else if let Some((input_ref, op, const_expr)) = expr.as_comparison_const() {
907                let new_expr = if let Ok(expr) = const_expr
908                    .clone()
909                    .cast_implicit(input_ref.data_type.clone())
910                {
911                    expr
912                } else {
913                    match self::cast_compare::cast_compare_for_cmp(
914                        const_expr,
915                        input_ref.data_type,
916                        op,
917                    ) {
918                        Ok(ResultForCmp::Success(expr)) => expr,
919                        _ => {
920                            other_conds.push(expr);
921                            continue;
922                        }
923                    }
924                };
925                let Some(value) = new_expr.fold_const()? else {
926                    // column compare with NULL, the result is always  NULL.
927                    return Ok(None);
928                };
929                match op {
930                    ExprType::LessThan => {
931                        upper_bound_conjunctions.push(Bound::Excluded(value));
932                    }
933                    ExprType::LessThanOrEqual => {
934                        upper_bound_conjunctions.push(Bound::Included(value));
935                    }
936                    ExprType::GreaterThan => {
937                        lower_bound_conjunctions.push(Bound::Excluded(value));
938                    }
939                    ExprType::GreaterThanOrEqual => {
940                        lower_bound_conjunctions.push(Bound::Included(value));
941                    }
942                    _ => unreachable!(),
943                }
944            } else {
945                other_conds.push(expr);
946            }
947        }
948        Ok(Some((
949            lower_bound_conjunctions,
950            upper_bound_conjunctions,
951            eq_conds,
952            other_conds,
953        )))
954    }
955
956    fn mutual_exclusive_with_eq_conds(
957        new_conds: &ScalarImpl,
958        eq_conds: &[Option<ScalarImpl>],
959    ) -> bool {
960        !eq_conds.is_empty()
961            && eq_conds.iter().all(|l| {
962                if let Some(l) = l {
963                    l != new_conds
964                } else {
965                    true
966                }
967            })
968    }
969
970    fn merge_lower_bound_conjunctions(lb: Vec<Bound<ScalarImpl>>) -> Bound<ScalarImpl> {
971        lb.into_iter()
972            .max_by(|a, b| {
973                // For lower bound, Unbounded means -inf
974                match (a, b) {
975                    (Bound::Included(_), Bound::Unbounded) => std::cmp::Ordering::Greater,
976                    (Bound::Excluded(_), Bound::Unbounded) => std::cmp::Ordering::Greater,
977                    (Bound::Unbounded, Bound::Included(_)) => std::cmp::Ordering::Less,
978                    (Bound::Unbounded, Bound::Excluded(_)) => std::cmp::Ordering::Less,
979                    (Bound::Unbounded, Bound::Unbounded) => std::cmp::Ordering::Equal,
980                    (Bound::Included(a), Bound::Included(b)) => a.default_cmp(b),
981                    (Bound::Excluded(a), Bound::Excluded(b)) => a.default_cmp(b),
982                    // excluded bound is strict than included bound so we assume it more greater.
983                    (Bound::Included(a), Bound::Excluded(b)) => match a.default_cmp(b) {
984                        std::cmp::Ordering::Equal => std::cmp::Ordering::Less,
985                        other => other,
986                    },
987                    (Bound::Excluded(a), Bound::Included(b)) => match a.default_cmp(b) {
988                        std::cmp::Ordering::Equal => std::cmp::Ordering::Greater,
989                        other => other,
990                    },
991                }
992            })
993            .unwrap_or(Bound::Unbounded)
994    }
995
996    fn merge_upper_bound_conjunctions(ub: Vec<Bound<ScalarImpl>>) -> Bound<ScalarImpl> {
997        ub.into_iter()
998            .min_by(|a, b| {
999                // For upper bound, Unbounded means +inf
1000                match (a, b) {
1001                    (Bound::Included(_), Bound::Unbounded) => std::cmp::Ordering::Less,
1002                    (Bound::Excluded(_), Bound::Unbounded) => std::cmp::Ordering::Less,
1003                    (Bound::Unbounded, Bound::Included(_)) => std::cmp::Ordering::Greater,
1004                    (Bound::Unbounded, Bound::Excluded(_)) => std::cmp::Ordering::Greater,
1005                    (Bound::Unbounded, Bound::Unbounded) => std::cmp::Ordering::Equal,
1006                    (Bound::Included(a), Bound::Included(b)) => a.default_cmp(b),
1007                    (Bound::Excluded(a), Bound::Excluded(b)) => a.default_cmp(b),
1008                    // excluded bound is strict than included bound so we assume it more greater.
1009                    (Bound::Included(a), Bound::Excluded(b)) => match a.default_cmp(b) {
1010                        std::cmp::Ordering::Equal => std::cmp::Ordering::Greater,
1011                        other => other,
1012                    },
1013                    (Bound::Excluded(a), Bound::Included(b)) => match a.default_cmp(b) {
1014                        std::cmp::Ordering::Equal => std::cmp::Ordering::Less,
1015                        other => other,
1016                    },
1017                }
1018            })
1019            .unwrap_or(Bound::Unbounded)
1020    }
1021
1022    fn is_invalid_range(lower_bound: &Bound<ScalarImpl>, upper_bound: &Bound<ScalarImpl>) -> bool {
1023        match (lower_bound, upper_bound) {
1024            (Bound::Included(l), Bound::Included(u)) => l.default_cmp(u).is_gt(), // l > u
1025            (Bound::Included(l), Bound::Excluded(u)) => l.default_cmp(u).is_ge(), // l >= u
1026            (Bound::Excluded(l), Bound::Included(u)) => l.default_cmp(u).is_ge(), // l >= u
1027            (Bound::Excluded(l), Bound::Excluded(u)) => l.default_cmp(u).is_ge(), // l >= u
1028            _ => false,
1029        }
1030    }
1031
1032    fn extract_eq_conds_within_range(
1033        eq_conds: Vec<Option<ScalarImpl>>,
1034        upper_bound: &Bound<ScalarImpl>,
1035        lower_bound: &Bound<ScalarImpl>,
1036    ) -> Vec<Option<ScalarImpl>> {
1037        // defensive programming: for now we will guarantee that the range is valid before calling
1038        // this function
1039        if Self::is_invalid_range(lower_bound, upper_bound) {
1040            return vec![];
1041        }
1042
1043        let is_extract_null = upper_bound == &Bound::Unbounded && lower_bound == &Bound::Unbounded;
1044
1045        eq_conds
1046            .into_iter()
1047            .filter(|cond| {
1048                if let Some(cond) = cond {
1049                    match lower_bound {
1050                        Bound::Included(val) => {
1051                            if cond.default_cmp(val).is_lt() {
1052                                // cond < val
1053                                return false;
1054                            }
1055                        }
1056                        Bound::Excluded(val) => {
1057                            if cond.default_cmp(val).is_le() {
1058                                // cond <= val
1059                                return false;
1060                            }
1061                        }
1062                        Bound::Unbounded => {}
1063                    }
1064                    match upper_bound {
1065                        Bound::Included(val) => {
1066                            if cond.default_cmp(val).is_gt() {
1067                                // cond > val
1068                                return false;
1069                            }
1070                        }
1071                        Bound::Excluded(val) => {
1072                            if cond.default_cmp(val).is_ge() {
1073                                // cond >= val
1074                                return false;
1075                            }
1076                        }
1077                        Bound::Unbounded => {}
1078                    }
1079                    true
1080                } else {
1081                    is_extract_null
1082                }
1083            })
1084            .collect()
1085    }
1086
1087    /// Split the condition expressions into `N` groups.
1088    /// An expression `expr` is in the `i`-th group if `f(expr)==i`.
1089    ///
1090    /// # Panics
1091    /// Panics if `f(expr)>=N`.
1092    #[must_use]
1093    pub fn group_by<F, const N: usize>(self, f: F) -> [Self; N]
1094    where
1095        F: Fn(&ExprImpl) -> usize,
1096    {
1097        const EMPTY: Vec<ExprImpl> = vec![];
1098        let mut groups = [EMPTY; N];
1099        for (key, group) in &self.conjunctions.into_iter().chunk_by(|expr| {
1100            // i-th group
1101            let i = f(expr);
1102            assert!(i < N);
1103            i
1104        }) {
1105            groups[key].extend(group);
1106        }
1107
1108        groups.map(|group| Condition {
1109            conjunctions: group,
1110        })
1111    }
1112
1113    #[must_use]
1114    pub fn rewrite_expr(self, rewriter: &mut (impl ExprRewriter + ?Sized)) -> Self {
1115        Self {
1116            conjunctions: self
1117                .conjunctions
1118                .into_iter()
1119                .map(|expr| rewriter.rewrite_expr(expr))
1120                .collect(),
1121        }
1122        .simplify()
1123    }
1124
1125    pub fn visit_expr<V: ExprVisitor + ?Sized>(&self, visitor: &mut V) {
1126        self.conjunctions
1127            .iter()
1128            .for_each(|expr| visitor.visit_expr(expr));
1129    }
1130
1131    pub fn visit_expr_mut(&mut self, mutator: &mut (impl ExprMutator + ?Sized)) {
1132        self.conjunctions
1133            .iter_mut()
1134            .for_each(|expr| mutator.visit_expr(expr))
1135    }
1136
1137    /// Simplify conditions
1138    /// It simplify conditions by applying constant folding and removing unnecessary conjunctions
1139    fn simplify(self) -> Self {
1140        // boolean constant folding
1141        let conjunctions: Vec<_> = self
1142            .conjunctions
1143            .into_iter()
1144            .map(push_down_not)
1145            .map(fold_boolean_constant)
1146            .map(column_self_eq_eliminate)
1147            .flat_map(to_conjunctions)
1148            .collect();
1149        let mut res: Vec<ExprImpl> = Vec::new();
1150        let mut visited: HashSet<ExprImpl> = HashSet::new();
1151        for expr in conjunctions {
1152            // factorization_expr requires hash-able ExprImpl
1153            if !expr.has_subquery() {
1154                let results_of_factorization = factorization_expr(expr);
1155                res.extend(
1156                    results_of_factorization
1157                        .clone()
1158                        .into_iter()
1159                        .filter(|expr| !visited.contains(expr)),
1160                );
1161                visited.extend(results_of_factorization);
1162            } else {
1163                // for subquery, simply give up factorization
1164                res.push(expr);
1165            }
1166        }
1167        // remove all constant boolean `true`
1168        res.retain(|expr| {
1169            if let Some(v) = try_get_bool_constant(expr)
1170                && v
1171            {
1172                false
1173            } else {
1174                true
1175            }
1176        });
1177        // if there is a `false` in conjunctions, the whole condition will be `false`
1178        for expr in &mut res {
1179            if let Some(v) = try_get_bool_constant(expr)
1180                && !v
1181            {
1182                res.clear();
1183                res.push(ExprImpl::literal_bool(false));
1184                break;
1185            }
1186        }
1187        Self { conjunctions: res }
1188    }
1189}
1190
1191pub struct ConditionDisplay<'a> {
1192    pub condition: &'a Condition,
1193    pub input_schema: &'a Schema,
1194}
1195
1196impl ConditionDisplay<'_> {
1197    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1198        if self.condition.always_true() {
1199            write!(f, "true")
1200        } else {
1201            write!(
1202                f,
1203                "{}",
1204                self.condition
1205                    .conjunctions
1206                    .iter()
1207                    .format_with(" AND ", |expr, f| {
1208                        f(&ExprDisplay {
1209                            expr,
1210                            input_schema: self.input_schema,
1211                        })
1212                    })
1213            )
1214        }
1215    }
1216}
1217
1218impl fmt::Display for ConditionDisplay<'_> {
1219    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1220        self.fmt(f)
1221    }
1222}
1223
1224impl fmt::Debug for ConditionDisplay<'_> {
1225    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1226        self.fmt(f)
1227    }
1228}
1229
1230/// `cast_compare` can be summarized as casting to target type which can be compared but can't be
1231/// cast implicitly to, like:
1232/// 1. bigger range -> smaller range in same type, e.g. int64 -> int32
1233/// 2. different type, e.g. float type -> integral type
1234mod cast_compare {
1235    use risingwave_common::types::DataType;
1236
1237    use crate::expr::{Expr, ExprImpl, ExprType};
1238
1239    enum ShrinkResult {
1240        OutUpperBound,
1241        OutLowerBound,
1242        InRange(ExprImpl),
1243    }
1244
1245    pub enum ResultForEq {
1246        Success(ExprImpl),
1247        NeverEqual,
1248    }
1249
1250    pub enum ResultForCmp {
1251        Success(ExprImpl),
1252        OutUpperBound,
1253        OutLowerBound,
1254    }
1255
1256    pub fn cast_compare_for_eq(const_expr: ExprImpl, target: DataType) -> Result<ResultForEq, ()> {
1257        match (const_expr.return_type(), &target) {
1258            (DataType::Int64, DataType::Int32)
1259            | (DataType::Int64, DataType::Int16)
1260            | (DataType::Int32, DataType::Int16) => match shrink_integral(const_expr, target)? {
1261                ShrinkResult::InRange(expr) => Ok(ResultForEq::Success(expr)),
1262                ShrinkResult::OutUpperBound | ShrinkResult::OutLowerBound => {
1263                    Ok(ResultForEq::NeverEqual)
1264                }
1265            },
1266            _ => Err(()),
1267        }
1268    }
1269
1270    pub fn cast_compare_for_cmp(
1271        const_expr: ExprImpl,
1272        target: DataType,
1273        _op: ExprType,
1274    ) -> Result<ResultForCmp, ()> {
1275        match (const_expr.return_type(), &target) {
1276            (DataType::Int64, DataType::Int32)
1277            | (DataType::Int64, DataType::Int16)
1278            | (DataType::Int32, DataType::Int16) => match shrink_integral(const_expr, target)? {
1279                ShrinkResult::InRange(expr) => Ok(ResultForCmp::Success(expr)),
1280                ShrinkResult::OutUpperBound => Ok(ResultForCmp::OutUpperBound),
1281                ShrinkResult::OutLowerBound => Ok(ResultForCmp::OutLowerBound),
1282            },
1283            _ => Err(()),
1284        }
1285    }
1286
1287    fn shrink_integral(const_expr: ExprImpl, target: DataType) -> Result<ShrinkResult, ()> {
1288        let (upper_bound, lower_bound) = match (const_expr.return_type(), &target) {
1289            (DataType::Int64, DataType::Int32) => (i32::MAX as i64, i32::MIN as i64),
1290            (DataType::Int64, DataType::Int16) | (DataType::Int32, DataType::Int16) => {
1291                (i16::MAX as i64, i16::MIN as i64)
1292            }
1293            _ => unreachable!(),
1294        };
1295        match const_expr.fold_const().map_err(|_| ())? {
1296            Some(scalar) => {
1297                let value = scalar.as_integral();
1298                if value > upper_bound {
1299                    Ok(ShrinkResult::OutUpperBound)
1300                } else if value < lower_bound {
1301                    Ok(ShrinkResult::OutLowerBound)
1302                } else {
1303                    Ok(ShrinkResult::InRange(
1304                        const_expr.cast_explicit(target).unwrap(),
1305                    ))
1306                }
1307            }
1308            None => Ok(ShrinkResult::InRange(
1309                const_expr.cast_explicit(target).unwrap(),
1310            )),
1311        }
1312    }
1313}
1314
1315#[cfg(test)]
1316mod tests {
1317    use rand::Rng;
1318
1319    use super::*;
1320
1321    #[test]
1322    fn test_split() {
1323        let left_col_num = 3;
1324        let right_col_num = 2;
1325
1326        let ty = DataType::Int32;
1327
1328        let mut rng = rand::rng();
1329
1330        let left: ExprImpl = FunctionCall::new(
1331            ExprType::LessThanOrEqual,
1332            vec![
1333                InputRef::new(rng.random_range(0..left_col_num), ty.clone()).into(),
1334                InputRef::new(rng.random_range(0..left_col_num), ty.clone()).into(),
1335            ],
1336        )
1337        .unwrap()
1338        .into();
1339
1340        let right: ExprImpl = FunctionCall::new(
1341            ExprType::LessThan,
1342            vec![
1343                InputRef::new(
1344                    rng.random_range(left_col_num..left_col_num + right_col_num),
1345                    ty.clone(),
1346                )
1347                .into(),
1348                InputRef::new(
1349                    rng.random_range(left_col_num..left_col_num + right_col_num),
1350                    ty.clone(),
1351                )
1352                .into(),
1353            ],
1354        )
1355        .unwrap()
1356        .into();
1357
1358        let other: ExprImpl = FunctionCall::new(
1359            ExprType::GreaterThan,
1360            vec![
1361                InputRef::new(rng.random_range(0..left_col_num), ty.clone()).into(),
1362                InputRef::new(
1363                    rng.random_range(left_col_num..left_col_num + right_col_num),
1364                    ty,
1365                )
1366                .into(),
1367            ],
1368        )
1369        .unwrap()
1370        .into();
1371
1372        let cond = Condition::with_expr(other.clone())
1373            .and(Condition::with_expr(right.clone()))
1374            .and(Condition::with_expr(left.clone()));
1375
1376        let res = cond.split(left_col_num, right_col_num);
1377
1378        assert_eq!(res.0.conjunctions, vec![left]);
1379        assert_eq!(res.1.conjunctions, vec![right]);
1380        assert_eq!(res.2.conjunctions, vec![other]);
1381    }
1382
1383    #[test]
1384    fn test_self_eq_eliminate() {
1385        let left_col_num = 3;
1386        let right_col_num = 2;
1387
1388        let ty = DataType::Int32;
1389
1390        let mut rng = rand::rng();
1391
1392        let x: ExprImpl = InputRef::new(rng.random_range(0..left_col_num), ty.clone()).into();
1393
1394        let left: ExprImpl = FunctionCall::new(ExprType::Equal, vec![x.clone(), x.clone()])
1395            .unwrap()
1396            .into();
1397
1398        let right: ExprImpl = FunctionCall::new(
1399            ExprType::LessThan,
1400            vec![
1401                InputRef::new(
1402                    rng.random_range(left_col_num..left_col_num + right_col_num),
1403                    ty.clone(),
1404                )
1405                .into(),
1406                InputRef::new(
1407                    rng.random_range(left_col_num..left_col_num + right_col_num),
1408                    ty.clone(),
1409                )
1410                .into(),
1411            ],
1412        )
1413        .unwrap()
1414        .into();
1415
1416        let other: ExprImpl = FunctionCall::new(
1417            ExprType::GreaterThan,
1418            vec![
1419                InputRef::new(rng.random_range(0..left_col_num), ty.clone()).into(),
1420                InputRef::new(
1421                    rng.random_range(left_col_num..left_col_num + right_col_num),
1422                    ty,
1423                )
1424                .into(),
1425            ],
1426        )
1427        .unwrap()
1428        .into();
1429
1430        let cond = Condition::with_expr(other.clone())
1431            .and(Condition::with_expr(right.clone()))
1432            .and(Condition::with_expr(left.clone()));
1433
1434        let res = cond.split(left_col_num, right_col_num);
1435
1436        let left_res = FunctionCall::new(ExprType::IsNotNull, vec![x])
1437            .unwrap()
1438            .into();
1439
1440        assert_eq!(res.0.conjunctions, vec![left_res]);
1441        assert_eq!(res.1.conjunctions, vec![right]);
1442        assert_eq!(res.2.conjunctions, vec![other]);
1443    }
1444}