risingwave_frontend/utils/
condition.rs

1// Copyright 2025 RisingWave Labs
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15use std::cmp::Ordering;
16use std::collections::{BTreeMap, HashSet};
17use std::fmt::{self, Debug};
18use std::ops::Bound;
19use std::sync::LazyLock;
20
21use fixedbitset::FixedBitSet;
22use itertools::Itertools;
23use risingwave_common::catalog::Schema;
24use risingwave_common::types::{DataType, DefaultOrd, ScalarImpl};
25use risingwave_common::util::iter_util::ZipEqFast;
26use risingwave_common::util::scan_range::{ScanRange, is_full_range};
27use risingwave_common::util::sort_util::{OrderType, cmp_rows};
28
29use crate::TableCatalog;
30use crate::error::Result;
31use crate::expr::{
32    ExprDisplay, ExprImpl, ExprMutator, ExprRewriter, ExprType, ExprVisitor, FunctionCall,
33    InequalityInputPair, InputRef, collect_input_refs, column_self_eq_eliminate,
34    factorization_expr, fold_boolean_constant, push_down_not, to_conjunctions,
35    try_get_bool_constant,
36};
37use crate::utils::condition::cast_compare::{ResultForCmp, ResultForEq};
38
39#[derive(Debug, Clone, PartialEq, Eq, Hash)]
40pub struct Condition {
41    /// Condition expressions in conjunction form (combined with `AND`)
42    pub conjunctions: Vec<ExprImpl>,
43}
44
45impl IntoIterator for Condition {
46    type IntoIter = std::vec::IntoIter<ExprImpl>;
47    type Item = ExprImpl;
48
49    fn into_iter(self) -> Self::IntoIter {
50        self.conjunctions.into_iter()
51    }
52}
53
54impl fmt::Display for Condition {
55    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
56        let mut conjunctions = self.conjunctions.iter();
57        if let Some(expr) = conjunctions.next() {
58            write!(f, "{:?}", expr)?;
59        }
60        if self.always_true() {
61            write!(f, "true")?;
62        } else {
63            for expr in conjunctions {
64                write!(f, " AND {:?}", expr)?;
65            }
66        }
67        Ok(())
68    }
69}
70
71impl Condition {
72    pub fn with_expr(expr: ExprImpl) -> Self {
73        let conjunctions = to_conjunctions(expr);
74
75        Self { conjunctions }.simplify()
76    }
77
78    pub fn true_cond() -> Self {
79        Self {
80            conjunctions: vec![],
81        }
82    }
83
84    pub fn false_cond() -> Self {
85        Self {
86            conjunctions: vec![ExprImpl::literal_bool(false)],
87        }
88    }
89
90    pub fn always_true(&self) -> bool {
91        self.conjunctions.is_empty()
92    }
93
94    pub fn always_false(&self) -> bool {
95        static FALSE: LazyLock<ExprImpl> = LazyLock::new(|| ExprImpl::literal_bool(false));
96        // There is at least one conjunction that is false.
97        !self.conjunctions.is_empty() && self.conjunctions.contains(&*FALSE)
98    }
99
100    /// Convert condition to an expression. If always true, return `None`.
101    pub fn as_expr_unless_true(&self) -> Option<ExprImpl> {
102        if self.always_true() {
103            None
104        } else {
105            Some(self.clone().into())
106        }
107    }
108
109    #[must_use]
110    pub fn and(self, other: Self) -> Self {
111        let mut ret = self;
112        ret.conjunctions.extend(other.conjunctions);
113        ret.simplify()
114    }
115
116    #[must_use]
117    pub fn or(self, other: Self) -> Self {
118        let or_expr = ExprImpl::FunctionCall(
119            FunctionCall::new_unchecked(
120                ExprType::Or,
121                vec![self.into(), other.into()],
122                DataType::Boolean,
123            )
124            .into(),
125        );
126        let ret = Self::with_expr(or_expr);
127        ret.simplify()
128    }
129
130    /// Split the condition expressions into 3 groups: left, right and others
131    #[must_use]
132    pub fn split(self, left_col_num: usize, right_col_num: usize) -> (Self, Self, Self) {
133        let left_bit_map = FixedBitSet::from_iter(0..left_col_num);
134        let right_bit_map = FixedBitSet::from_iter(left_col_num..left_col_num + right_col_num);
135
136        self.group_by::<_, 3>(|expr| {
137            let input_bits = expr.collect_input_refs(left_col_num + right_col_num);
138            if input_bits.is_subset(&left_bit_map) {
139                0
140            } else if input_bits.is_subset(&right_bit_map) {
141                1
142            } else {
143                2
144            }
145        })
146        .into_iter()
147        .next_tuple()
148        .unwrap()
149    }
150
151    /// Collect all `InputRef`s' indexes in the expressions.
152    ///
153    /// # Panics
154    /// Panics if `input_ref >= input_col_num`.
155    pub fn collect_input_refs(&self, input_col_num: usize) -> FixedBitSet {
156        collect_input_refs(input_col_num, &self.conjunctions)
157    }
158
159    /// Split the condition expressions into (N choose 2) + 1 groups: those containing two columns
160    /// from different buckets (and optionally, needing an equal condition between them), and
161    /// others.
162    ///
163    /// `input_num_cols` are the number of columns in each of the input buckets. For instance, with
164    /// bucket0: col0, col1, col2 | bucket1: col3, col4 | bucket2: col5
165    /// `input_num_cols` = [3, 2, 1]
166    ///
167    /// Returns hashmap with keys of the form (col1, col2) where col1 < col2 in terms of their col
168    /// index.
169    ///
170    /// `only_eq`: whether to only split those conditions with an eq condition predicate between two
171    /// buckets.
172    #[must_use]
173    pub fn split_by_input_col_nums(
174        self,
175        input_col_nums: &[usize],
176        only_eq: bool,
177    ) -> (BTreeMap<(usize, usize), Self>, Self) {
178        let mut bitmaps = Vec::with_capacity(input_col_nums.len());
179        let mut cols_seen = 0;
180        for cols in input_col_nums {
181            bitmaps.push(FixedBitSet::from_iter(cols_seen..cols_seen + cols));
182            cols_seen += cols;
183        }
184
185        let mut pairwise_conditions = BTreeMap::new();
186        let mut non_eq_join = vec![];
187
188        for expr in self.conjunctions {
189            let input_bits = expr.collect_input_refs(cols_seen);
190            let mut subset_indices = Vec::with_capacity(input_col_nums.len());
191            for (idx, bitmap) in bitmaps.iter().enumerate() {
192                if !input_bits.is_disjoint(bitmap) {
193                    subset_indices.push(idx);
194                }
195            }
196            if subset_indices.len() != 2 || (only_eq && expr.as_eq_cond().is_none()) {
197                non_eq_join.push(expr);
198            } else {
199                // The key has the canonical ordering (lower, higher)
200                let key = if subset_indices[0] < subset_indices[1] {
201                    (subset_indices[0], subset_indices[1])
202                } else {
203                    (subset_indices[1], subset_indices[0])
204                };
205                let e = pairwise_conditions
206                    .entry(key)
207                    .or_insert_with(Condition::true_cond);
208                e.conjunctions.push(expr);
209            }
210        }
211        (
212            pairwise_conditions,
213            Condition {
214                conjunctions: non_eq_join,
215            },
216        )
217    }
218
219    #[must_use]
220    /// For [`EqJoinPredicate`], separate equality conditions which connect left columns and right
221    /// columns from other conditions.
222    ///
223    /// The equality conditions are transformed into `(left_col_id, right_col_id)` pairs.
224    ///
225    /// [`EqJoinPredicate`]: crate::optimizer::plan_node::EqJoinPredicate
226    pub fn split_eq_keys(
227        self,
228        left_col_num: usize,
229        right_col_num: usize,
230    ) -> (Vec<(InputRef, InputRef, bool)>, Self) {
231        let left_bit_map = FixedBitSet::from_iter(0..left_col_num);
232        let right_bit_map = FixedBitSet::from_iter(left_col_num..left_col_num + right_col_num);
233
234        let (mut eq_keys, mut others) = (vec![], vec![]);
235        self.conjunctions.into_iter().for_each(|expr| {
236            let input_bits = expr.collect_input_refs(left_col_num + right_col_num);
237            if input_bits.is_disjoint(&left_bit_map) || input_bits.is_disjoint(&right_bit_map) {
238                others.push(expr)
239            } else if let Some(columns) = expr.as_eq_cond() {
240                eq_keys.push((columns.0, columns.1, false));
241            } else if let Some(columns) = expr.as_is_not_distinct_from_cond() {
242                eq_keys.push((columns.0, columns.1, true));
243            } else {
244                others.push(expr)
245            }
246        });
247
248        (
249            eq_keys,
250            Condition {
251                conjunctions: others,
252            },
253        )
254    }
255
256    /// For [`EqJoinPredicate`], extract inequality conditions which connect left columns and right
257    /// columns from other conditions.
258    ///
259    /// The inequality conditions are transformed into `(left_col_id, right_col_id, offset)` pairs.
260    ///
261    /// [`EqJoinPredicate`]: crate::optimizer::plan_node::EqJoinPredicate
262    pub(crate) fn extract_inequality_keys(
263        &self,
264        left_col_num: usize,
265        right_col_num: usize,
266    ) -> Vec<(usize, InequalityInputPair)> {
267        let left_bit_map = FixedBitSet::from_iter(0..left_col_num);
268        let right_bit_map = FixedBitSet::from_iter(left_col_num..left_col_num + right_col_num);
269
270        self.conjunctions
271            .iter()
272            .enumerate()
273            .filter_map(|(conjunction_idx, expr)| {
274                let input_bits = expr.collect_input_refs(left_col_num + right_col_num);
275                if input_bits.is_disjoint(&left_bit_map) || input_bits.is_disjoint(&right_bit_map) {
276                    None
277                } else {
278                    expr.as_input_comparison_cond()
279                        .map(|inequality_pair| (conjunction_idx, inequality_pair))
280                }
281            })
282            .collect_vec()
283    }
284
285    /// Split the condition expressions into 2 groups: those referencing `columns` and others which
286    /// are disjoint with columns.
287    #[must_use]
288    pub fn split_disjoint(self, columns: &FixedBitSet) -> (Self, Self) {
289        self.group_by::<_, 2>(|expr| {
290            let input_bits = expr.collect_input_refs(columns.len());
291            input_bits.is_disjoint(columns) as usize
292        })
293        .into_iter()
294        .next_tuple()
295        .unwrap()
296    }
297
298    /// Generate range scans from each arm of `OR` clause and merge them.
299    /// Currently, only support equal type range scans.
300    /// Keep in mind that range scans can not overlap, otherwise duplicate rows will occur.
301    fn disjunctions_to_scan_ranges(
302        table: &TableCatalog,
303        max_split_range_gap: u64,
304        disjunctions: Vec<ExprImpl>,
305    ) -> Result<Option<(Vec<ScanRange>, bool)>> {
306        let disjunctions_result: Result<Vec<(Vec<ScanRange>, Self)>> = disjunctions
307            .into_iter()
308            .map(|x| {
309                Condition {
310                    conjunctions: to_conjunctions(x),
311                }
312                .split_to_scan_ranges(table, max_split_range_gap)
313            })
314            .collect();
315
316        // If any arm of `OR` clause fails, bail out.
317        let disjunctions_result = disjunctions_result?;
318
319        // If all arms of `OR` clause scan ranges are simply equal condition type, merge all
320        // of them.
321        let all_equal = disjunctions_result
322            .iter()
323            .all(|(scan_ranges, other_condition)| {
324                other_condition.always_true()
325                    && scan_ranges
326                        .iter()
327                        .all(|x| !x.eq_conds.is_empty() && is_full_range(&x.range))
328            });
329
330        if all_equal {
331            // Think about the case (a = 1) or (a = 1 and b = 2).
332            // We should only keep the large one range scan a = 1, because a = 1 overlaps with
333            // (a = 1 and b = 2).
334            let scan_ranges = disjunctions_result
335                .into_iter()
336                .flat_map(|(scan_ranges, _)| scan_ranges)
337                // sort, large one first
338                .sorted_by(|a, b| a.eq_conds.len().cmp(&b.eq_conds.len()))
339                .collect_vec();
340            // Make sure each range never overlaps with others, that's what scan range mean.
341            let mut non_overlap_scan_ranges: Vec<ScanRange> = vec![];
342            for s1 in &scan_ranges {
343                let overlap = non_overlap_scan_ranges.iter().any(|s2| {
344                    #[allow(clippy::disallowed_methods)]
345                    s1.eq_conds
346                        .iter()
347                        .zip(s2.eq_conds.iter())
348                        .all(|(a, b)| a == b)
349                });
350                // If overlap happens, keep the large one and large one always in
351                // `non_overlap_scan_ranges`.
352                // Otherwise, put s1 into `non_overlap_scan_ranges`.
353                if !overlap {
354                    non_overlap_scan_ranges.push(s1.clone());
355                }
356            }
357
358            Ok(Some((non_overlap_scan_ranges, false)))
359        } else {
360            let mut scan_ranges = vec![];
361            for (scan_ranges_chunk, _) in disjunctions_result {
362                if scan_ranges_chunk.is_empty() {
363                    // full scan range
364                    return Ok(None);
365                }
366
367                scan_ranges.extend(scan_ranges_chunk);
368            }
369
370            let order_types = table
371                .pk
372                .iter()
373                .cloned()
374                .map(|x| {
375                    if x.order_type.is_descending() {
376                        x.order_type.reverse()
377                    } else {
378                        x.order_type
379                    }
380                })
381                .collect_vec();
382            scan_ranges.sort_by(|left, right| {
383                let (left_start, _left_end) = &left.convert_to_range();
384                let (right_start, _right_end) = &right.convert_to_range();
385
386                let left_start_vec = match &left_start {
387                    Bound::Included(vec) | Bound::Excluded(vec) => vec,
388                    _ => &vec![],
389                };
390                let right_start_vec = match &right_start {
391                    Bound::Included(vec) | Bound::Excluded(vec) => vec,
392                    _ => &vec![],
393                };
394
395                if left_start_vec.is_empty() && right_start_vec.is_empty() {
396                    return Ordering::Less;
397                }
398
399                if left_start_vec.is_empty() {
400                    return Ordering::Less;
401                }
402
403                if right_start_vec.is_empty() {
404                    return Ordering::Greater;
405                }
406
407                let cmp_column_len = left_start_vec.len().min(right_start_vec.len());
408                cmp_rows(
409                    &left_start_vec[0..cmp_column_len],
410                    &right_start_vec[0..cmp_column_len],
411                    &order_types[0..cmp_column_len],
412                )
413            });
414
415            if scan_ranges.is_empty() {
416                return Ok(None);
417            }
418
419            if scan_ranges.len() == 1 {
420                return Ok(Some((scan_ranges, true)));
421            }
422
423            let mut output_scan_ranges: Vec<ScanRange> = vec![];
424            output_scan_ranges.push(scan_ranges[0].clone());
425            let mut idx = 1;
426            loop {
427                if idx >= scan_ranges.len() {
428                    break;
429                }
430
431                let scan_range_left = output_scan_ranges.last_mut().unwrap();
432                let scan_range_right = &scan_ranges[idx];
433
434                if scan_range_left.eq_conds == scan_range_right.eq_conds {
435                    // range merge
436
437                    if !ScanRange::is_overlap(scan_range_left, scan_range_right, &order_types) {
438                        // not merge
439                        output_scan_ranges.push(scan_range_right.clone());
440                        idx += 1;
441                        continue;
442                    }
443
444                    // merge range
445                    fn merge_bound(
446                        left_scan_range: &Bound<Vec<Option<ScalarImpl>>>,
447                        right_scan_range: &Bound<Vec<Option<ScalarImpl>>>,
448                        order_types: &[OrderType],
449                        left_bound: bool,
450                    ) -> Bound<Vec<Option<ScalarImpl>>> {
451                        let left_scan_range = match left_scan_range {
452                            Bound::Included(vec) | Bound::Excluded(vec) => vec,
453                            Bound::Unbounded => return Bound::Unbounded,
454                        };
455
456                        let right_scan_range = match right_scan_range {
457                            Bound::Included(vec) | Bound::Excluded(vec) => vec,
458                            Bound::Unbounded => return Bound::Unbounded,
459                        };
460
461                        let cmp_len = left_scan_range.len().min(right_scan_range.len());
462
463                        let cmp = cmp_rows(
464                            &left_scan_range[..cmp_len],
465                            &right_scan_range[..cmp_len],
466                            &order_types[..cmp_len],
467                        );
468
469                        let bound = {
470                            if (cmp.is_le() && left_bound) || (cmp.is_ge() && !left_bound) {
471                                left_scan_range.to_vec()
472                            } else {
473                                right_scan_range.to_vec()
474                            }
475                        };
476
477                        // Included Bound just for convenience, the correctness will be guaranteed by the upper level filter.
478                        Bound::Included(bound)
479                    }
480
481                    scan_range_left.range.0 = merge_bound(
482                        &scan_range_left.range.0,
483                        &scan_range_right.range.0,
484                        &order_types,
485                        true,
486                    );
487
488                    scan_range_left.range.1 = merge_bound(
489                        &scan_range_left.range.1,
490                        &scan_range_right.range.1,
491                        &order_types,
492                        false,
493                    );
494
495                    if scan_range_left.is_full_table_scan() {
496                        return Ok(None);
497                    }
498                } else {
499                    output_scan_ranges.push(scan_range_right.clone());
500                }
501
502                idx += 1;
503            }
504
505            Ok(Some((output_scan_ranges, true)))
506        }
507    }
508
509    fn split_row_cmp_to_scan_ranges(
510        &self,
511        table: &TableCatalog,
512    ) -> Result<Option<(Vec<ScanRange>, Self)>> {
513        let (mut row_conjunctions, row_conjunctions_without_struct): (Vec<_>, Vec<_>) =
514            self.conjunctions.clone().into_iter().partition(|expr| {
515                if let Some(f) = expr.as_function_call() {
516                    if let Some(left_input) = f.inputs().get(0)
517                        && let Some(left_input) = left_input.as_function_call()
518                        && matches!(left_input.func_type(), ExprType::Row)
519                        && left_input.inputs().iter().all(|x| x.is_input_ref())
520                        && let Some(right_input) = f.inputs().get(1)
521                        && right_input.is_literal()
522                    {
523                        true
524                    } else {
525                        false
526                    }
527                } else {
528                    false
529                }
530            });
531        // optimize for single row conjunctions. More optimisations may come later
532        // For example, (v1,v2,v3) > (1, 2, 3) means all data from (1, 2, 3).
533        // Suppose v1 v2 v3 are both pk, we can push (v1,v2,v3)> (1,2,3) down to scan
534        // Suppose v1 v2 are both pk, we can push (v1,v2)> (1,2) down to scan and add (v1,v2,v3) > (1,2,3) in filter, it is still possible to reduce the value of scan
535        if row_conjunctions.len() == 1 {
536            let row_conjunction = row_conjunctions.pop().unwrap();
537            let row_left_inputs = row_conjunction
538                .as_function_call()
539                .unwrap()
540                .inputs()
541                .get(0)
542                .unwrap()
543                .as_function_call()
544                .unwrap()
545                .inputs();
546            let row_right_literal = row_conjunction
547                .as_function_call()
548                .unwrap()
549                .inputs()
550                .get(1)
551                .unwrap()
552                .as_literal()
553                .unwrap();
554            if !matches!(row_right_literal.get_data(), Some(ScalarImpl::Struct(_))) {
555                return Ok(None);
556            }
557            let row_right_literal_data = row_right_literal.get_data().clone().unwrap();
558            let right_iter = row_right_literal_data.as_struct().fields();
559            let func_type = row_conjunction.as_function_call().unwrap().func_type();
560            if row_left_inputs.len() > 1
561                && (matches!(func_type, ExprType::LessThan)
562                    || matches!(func_type, ExprType::GreaterThan))
563            {
564                let mut pk_struct = vec![];
565                let mut order_type = None;
566                let mut all_added = true;
567                let mut iter = row_left_inputs.iter().zip_eq_fast(right_iter);
568                for column_order in &table.pk {
569                    if let Some((left_expr, right_expr)) = iter.next() {
570                        if left_expr.as_input_ref().unwrap().index != column_order.column_index {
571                            all_added = false;
572                            break;
573                        }
574                        match order_type {
575                            Some(o) => {
576                                if o != column_order.order_type {
577                                    all_added = false;
578                                    break;
579                                }
580                            }
581                            None => order_type = Some(column_order.order_type),
582                        }
583                        pk_struct.push(right_expr.clone());
584                    }
585                }
586
587                // Here it is necessary to determine whether all of row is included in the `ScanRanges`, if so, the data for eq is not needed
588                if !pk_struct.is_empty() {
589                    if !all_added {
590                        let scan_range = ScanRange {
591                            eq_conds: vec![],
592                            range: match func_type {
593                                ExprType::GreaterThan => {
594                                    (Bound::Included(pk_struct), Bound::Unbounded)
595                                }
596                                ExprType::LessThan => {
597                                    (Bound::Unbounded, Bound::Included(pk_struct))
598                                }
599                                _ => unreachable!(),
600                            },
601                        };
602                        return Ok(Some((
603                            vec![scan_range],
604                            Condition {
605                                conjunctions: self.conjunctions.clone(),
606                            },
607                        )));
608                    } else {
609                        let scan_range = ScanRange {
610                            eq_conds: vec![],
611                            range: match func_type {
612                                ExprType::GreaterThan => {
613                                    (Bound::Excluded(pk_struct), Bound::Unbounded)
614                                }
615                                ExprType::LessThan => {
616                                    (Bound::Unbounded, Bound::Excluded(pk_struct))
617                                }
618                                _ => unreachable!(),
619                            },
620                        };
621                        return Ok(Some((
622                            vec![scan_range],
623                            Condition {
624                                conjunctions: row_conjunctions_without_struct,
625                            },
626                        )));
627                    }
628                }
629            }
630        }
631        Ok(None)
632    }
633
634    /// x = 1 AND y = 2 AND z = 3 => [x, y, z]
635    pub fn get_eq_const_input_refs(&self) -> Vec<InputRef> {
636        self.conjunctions
637            .iter()
638            .filter_map(|expr| expr.as_eq_const().map(|(input_ref, _)| input_ref))
639            .collect()
640    }
641
642    /// See also [`ScanRange`](risingwave_pb::batch_plan::ScanRange).
643    pub fn split_to_scan_ranges(
644        self,
645        table: &TableCatalog,
646        max_split_range_gap: u64,
647    ) -> Result<(Vec<ScanRange>, Self)> {
648        fn false_cond() -> (Vec<ScanRange>, Condition) {
649            (vec![], Condition::false_cond())
650        }
651
652        // It's an OR.
653        if self.conjunctions.len() == 1
654            && let Some(disjunctions) = self.conjunctions[0].as_or_disjunctions()
655        {
656            if let Some((scan_ranges, maintaining_condition)) =
657                Self::disjunctions_to_scan_ranges(table, max_split_range_gap, disjunctions)?
658            {
659                if maintaining_condition {
660                    return Ok((scan_ranges, self));
661                } else {
662                    return Ok((scan_ranges, Condition::true_cond()));
663                }
664            } else {
665                return Ok((vec![], self));
666            }
667        }
668        if let Some((scan_ranges, other_condition)) = self.split_row_cmp_to_scan_ranges(table)? {
669            return Ok((scan_ranges, other_condition));
670        }
671
672        let mut groups = Self::classify_conjunctions_by_pk(self.conjunctions, table);
673        let mut other_conds = groups.pop().unwrap();
674
675        // Analyze each group and use result to update scan range.
676        let mut scan_range = ScanRange::full_table_scan();
677        for i in 0..table.pk.len() {
678            let group = std::mem::take(&mut groups[i]);
679            if group.is_empty() {
680                groups.push(other_conds);
681                return Ok((
682                    if scan_range.is_full_table_scan() {
683                        vec![]
684                    } else {
685                        vec![scan_range]
686                    },
687                    Self {
688                        conjunctions: groups[i + 1..].concat(),
689                    },
690                ));
691            }
692
693            let Some((
694                lower_bound_conjunctions,
695                upper_bound_conjunctions,
696                eq_conds,
697                part_of_other_conds,
698            )) = Self::analyze_group(group)?
699            else {
700                return Ok(false_cond());
701            };
702            other_conds.extend(part_of_other_conds.into_iter());
703
704            let lower_bound = Self::merge_lower_bound_conjunctions(lower_bound_conjunctions);
705            let upper_bound = Self::merge_upper_bound_conjunctions(upper_bound_conjunctions);
706
707            if Self::is_invalid_range(&lower_bound, &upper_bound) {
708                return Ok(false_cond());
709            }
710
711            // update scan_range
712            match eq_conds.len() {
713                1 => {
714                    let eq_conds =
715                        Self::extract_eq_conds_within_range(eq_conds, &upper_bound, &lower_bound);
716                    if eq_conds.is_empty() {
717                        return Ok(false_cond());
718                    }
719                    scan_range.eq_conds.extend(eq_conds.into_iter());
720                }
721                0 => {
722                    let convert = |bound| match bound {
723                        Bound::Included(l) => Bound::Included(vec![Some(l)]),
724                        Bound::Excluded(l) => Bound::Excluded(vec![Some(l)]),
725                        Bound::Unbounded => Bound::Unbounded,
726                    };
727                    scan_range.range = (convert(lower_bound), convert(upper_bound));
728                    other_conds.extend(groups[i + 1..].iter().flatten().cloned());
729                    break;
730                }
731                _ => {
732                    // currently we will split IN list to multiple scan ranges immediately
733                    // i.e., a = 1 AND b in (1,2) is handled
734                    // TODO:
735                    // a in (1,2) AND b = 1
736                    // a in (1,2) AND b in (1,2)
737                    // a in (1,2) AND b > 1
738                    let eq_conds =
739                        Self::extract_eq_conds_within_range(eq_conds, &upper_bound, &lower_bound);
740                    if eq_conds.is_empty() {
741                        return Ok(false_cond());
742                    }
743                    other_conds.extend(groups[i + 1..].iter().flatten().cloned());
744                    let scan_ranges = eq_conds
745                        .into_iter()
746                        .map(|lit| {
747                            let mut scan_range = scan_range.clone();
748                            scan_range.eq_conds.push(lit);
749                            scan_range
750                        })
751                        .collect();
752                    return Ok((
753                        scan_ranges,
754                        Self {
755                            conjunctions: other_conds,
756                        },
757                    ));
758                }
759            }
760        }
761
762        Ok((
763            if scan_range.is_full_table_scan() {
764                vec![]
765            } else if table.columns[table.pk[0].column_index].data_type.is_int() {
766                match scan_range.split_small_range(max_split_range_gap) {
767                    Some(scan_ranges) => scan_ranges,
768                    None => vec![scan_range],
769                }
770            } else {
771                vec![scan_range]
772            },
773            Self {
774                conjunctions: other_conds,
775            },
776        ))
777    }
778
779    /// classify conjunctions into groups:
780    /// The i-th group has exprs that only reference the i-th PK column.
781    /// The last group contains all the other exprs.
782    fn classify_conjunctions_by_pk(
783        conjunctions: Vec<ExprImpl>,
784        table: &TableCatalog,
785    ) -> Vec<Vec<ExprImpl>> {
786        let pk_cols_num = table.pk.len();
787        let cols_num = table.columns.len();
788
789        let mut col_idx_to_pk_idx = vec![None; cols_num];
790        table
791            .order_column_indices()
792            .enumerate()
793            .for_each(|(idx, pk_idx)| {
794                col_idx_to_pk_idx[pk_idx] = Some(idx);
795            });
796
797        let mut groups = vec![vec![]; pk_cols_num + 1];
798        for (key, group) in &conjunctions.into_iter().chunk_by(|expr| {
799            let input_bits = expr.collect_input_refs(cols_num);
800            if input_bits.count_ones(..) == 1 {
801                let col_idx = input_bits.ones().next().unwrap();
802                col_idx_to_pk_idx[col_idx].unwrap_or(pk_cols_num)
803            } else {
804                pk_cols_num
805            }
806        }) {
807            groups[key].extend(group);
808        }
809
810        groups
811    }
812
813    /// Extract the following information in a group of conjunctions:
814    /// 1. lower bound conjunctions
815    /// 2. upper bound conjunctions
816    /// 3. eq conditions
817    /// 4. other conditions
818    ///
819    /// return None indicates that this conjunctions is always false
820    #[allow(clippy::type_complexity)]
821    fn analyze_group(
822        group: Vec<ExprImpl>,
823    ) -> Result<
824        Option<(
825            Vec<Bound<ScalarImpl>>,
826            Vec<Bound<ScalarImpl>>,
827            Vec<Option<ScalarImpl>>,
828            Vec<ExprImpl>,
829        )>,
830    > {
831        let mut lower_bound_conjunctions = vec![];
832        let mut upper_bound_conjunctions = vec![];
833        // values in eq_cond are OR'ed
834        let mut eq_conds = vec![];
835        let mut other_conds = vec![];
836
837        // analyze exprs in the group. scan_range is not updated
838        for expr in group {
839            if let Some((input_ref, const_expr)) = expr.as_eq_const() {
840                let new_expr = if let Ok(expr) =
841                    const_expr.clone().cast_implicit(&input_ref.data_type)
842                {
843                    expr
844                } else {
845                    match self::cast_compare::cast_compare_for_eq(const_expr, input_ref.data_type) {
846                        Ok(ResultForEq::Success(expr)) => expr,
847                        Ok(ResultForEq::NeverEqual) => {
848                            return Ok(None);
849                        }
850                        Err(_) => {
851                            other_conds.push(expr);
852                            continue;
853                        }
854                    }
855                };
856
857                let Some(new_cond) = new_expr.fold_const()? else {
858                    // column = NULL, the result is always NULL.
859                    return Ok(None);
860                };
861                if Self::mutual_exclusive_with_eq_conds(&new_cond, &eq_conds) {
862                    return Ok(None);
863                }
864                eq_conds = vec![Some(new_cond)];
865            } else if expr.as_is_null().is_some() {
866                if !eq_conds.is_empty() && eq_conds.into_iter().all(|l| l.is_some()) {
867                    return Ok(None);
868                }
869                eq_conds = vec![None];
870            } else if let Some((input_ref, in_const_list)) = expr.as_in_const_list() {
871                let mut scalars = HashSet::new();
872                for const_expr in in_const_list {
873                    // The cast should succeed, because otherwise the input_ref is casted
874                    // and thus `as_in_const_list` returns None.
875                    let const_expr = const_expr.cast_implicit(&input_ref.data_type).unwrap();
876                    let value = const_expr.fold_const()?;
877                    let Some(value) = value else {
878                        continue;
879                    };
880                    scalars.insert(Some(value));
881                }
882                if scalars.is_empty() {
883                    // There're only NULLs in the in-list
884                    return Ok(None);
885                }
886                if !eq_conds.is_empty() {
887                    scalars = scalars
888                        .intersection(&HashSet::from_iter(eq_conds))
889                        .cloned()
890                        .collect();
891                    if scalars.is_empty() {
892                        return Ok(None);
893                    }
894                }
895                // Sort to ensure a deterministic result for planner test.
896                eq_conds = scalars
897                    .into_iter()
898                    .sorted_by(DefaultOrd::default_cmp)
899                    .collect();
900            } else if let Some((input_ref, op, const_expr)) = expr.as_comparison_const() {
901                let new_expr =
902                    if let Ok(expr) = const_expr.clone().cast_implicit(&input_ref.data_type) {
903                        expr
904                    } else {
905                        match self::cast_compare::cast_compare_for_cmp(
906                            const_expr,
907                            input_ref.data_type,
908                            op,
909                        ) {
910                            Ok(ResultForCmp::Success(expr)) => expr,
911                            _ => {
912                                other_conds.push(expr);
913                                continue;
914                            }
915                        }
916                    };
917                let Some(value) = new_expr.fold_const()? else {
918                    // column compare with NULL, the result is always  NULL.
919                    return Ok(None);
920                };
921                match op {
922                    ExprType::LessThan => {
923                        upper_bound_conjunctions.push(Bound::Excluded(value));
924                    }
925                    ExprType::LessThanOrEqual => {
926                        upper_bound_conjunctions.push(Bound::Included(value));
927                    }
928                    ExprType::GreaterThan => {
929                        lower_bound_conjunctions.push(Bound::Excluded(value));
930                    }
931                    ExprType::GreaterThanOrEqual => {
932                        lower_bound_conjunctions.push(Bound::Included(value));
933                    }
934                    _ => unreachable!(),
935                }
936            } else {
937                other_conds.push(expr);
938            }
939        }
940        Ok(Some((
941            lower_bound_conjunctions,
942            upper_bound_conjunctions,
943            eq_conds,
944            other_conds,
945        )))
946    }
947
948    fn mutual_exclusive_with_eq_conds(
949        new_conds: &ScalarImpl,
950        eq_conds: &[Option<ScalarImpl>],
951    ) -> bool {
952        !eq_conds.is_empty()
953            && eq_conds.iter().all(|l| {
954                if let Some(l) = l {
955                    l != new_conds
956                } else {
957                    true
958                }
959            })
960    }
961
962    fn merge_lower_bound_conjunctions(lb: Vec<Bound<ScalarImpl>>) -> Bound<ScalarImpl> {
963        lb.into_iter()
964            .max_by(|a, b| {
965                // For lower bound, Unbounded means -inf
966                match (a, b) {
967                    (Bound::Included(_), Bound::Unbounded) => std::cmp::Ordering::Greater,
968                    (Bound::Excluded(_), Bound::Unbounded) => std::cmp::Ordering::Greater,
969                    (Bound::Unbounded, Bound::Included(_)) => std::cmp::Ordering::Less,
970                    (Bound::Unbounded, Bound::Excluded(_)) => std::cmp::Ordering::Less,
971                    (Bound::Unbounded, Bound::Unbounded) => std::cmp::Ordering::Equal,
972                    (Bound::Included(a), Bound::Included(b)) => a.default_cmp(b),
973                    (Bound::Excluded(a), Bound::Excluded(b)) => a.default_cmp(b),
974                    // excluded bound is strict than included bound so we assume it more greater.
975                    (Bound::Included(a), Bound::Excluded(b)) => match a.default_cmp(b) {
976                        std::cmp::Ordering::Equal => std::cmp::Ordering::Less,
977                        other => other,
978                    },
979                    (Bound::Excluded(a), Bound::Included(b)) => match a.default_cmp(b) {
980                        std::cmp::Ordering::Equal => std::cmp::Ordering::Greater,
981                        other => other,
982                    },
983                }
984            })
985            .unwrap_or(Bound::Unbounded)
986    }
987
988    fn merge_upper_bound_conjunctions(ub: Vec<Bound<ScalarImpl>>) -> Bound<ScalarImpl> {
989        ub.into_iter()
990            .min_by(|a, b| {
991                // For upper bound, Unbounded means +inf
992                match (a, b) {
993                    (Bound::Included(_), Bound::Unbounded) => std::cmp::Ordering::Less,
994                    (Bound::Excluded(_), Bound::Unbounded) => std::cmp::Ordering::Less,
995                    (Bound::Unbounded, Bound::Included(_)) => std::cmp::Ordering::Greater,
996                    (Bound::Unbounded, Bound::Excluded(_)) => std::cmp::Ordering::Greater,
997                    (Bound::Unbounded, Bound::Unbounded) => std::cmp::Ordering::Equal,
998                    (Bound::Included(a), Bound::Included(b)) => a.default_cmp(b),
999                    (Bound::Excluded(a), Bound::Excluded(b)) => a.default_cmp(b),
1000                    // excluded bound is strict than included bound so we assume it more greater.
1001                    (Bound::Included(a), Bound::Excluded(b)) => match a.default_cmp(b) {
1002                        std::cmp::Ordering::Equal => std::cmp::Ordering::Greater,
1003                        other => other,
1004                    },
1005                    (Bound::Excluded(a), Bound::Included(b)) => match a.default_cmp(b) {
1006                        std::cmp::Ordering::Equal => std::cmp::Ordering::Less,
1007                        other => other,
1008                    },
1009                }
1010            })
1011            .unwrap_or(Bound::Unbounded)
1012    }
1013
1014    fn is_invalid_range(lower_bound: &Bound<ScalarImpl>, upper_bound: &Bound<ScalarImpl>) -> bool {
1015        match (lower_bound, upper_bound) {
1016            (Bound::Included(l), Bound::Included(u)) => l.default_cmp(u).is_gt(), // l > u
1017            (Bound::Included(l), Bound::Excluded(u)) => l.default_cmp(u).is_ge(), // l >= u
1018            (Bound::Excluded(l), Bound::Included(u)) => l.default_cmp(u).is_ge(), // l >= u
1019            (Bound::Excluded(l), Bound::Excluded(u)) => l.default_cmp(u).is_ge(), // l >= u
1020            _ => false,
1021        }
1022    }
1023
1024    fn extract_eq_conds_within_range(
1025        eq_conds: Vec<Option<ScalarImpl>>,
1026        upper_bound: &Bound<ScalarImpl>,
1027        lower_bound: &Bound<ScalarImpl>,
1028    ) -> Vec<Option<ScalarImpl>> {
1029        // defensive programming: for now we will guarantee that the range is valid before calling
1030        // this function
1031        if Self::is_invalid_range(lower_bound, upper_bound) {
1032            return vec![];
1033        }
1034
1035        let is_extract_null = upper_bound == &Bound::Unbounded && lower_bound == &Bound::Unbounded;
1036
1037        eq_conds
1038            .into_iter()
1039            .filter(|cond| {
1040                if let Some(cond) = cond {
1041                    match lower_bound {
1042                        Bound::Included(val) => {
1043                            if cond.default_cmp(val).is_lt() {
1044                                // cond < val
1045                                return false;
1046                            }
1047                        }
1048                        Bound::Excluded(val) => {
1049                            if cond.default_cmp(val).is_le() {
1050                                // cond <= val
1051                                return false;
1052                            }
1053                        }
1054                        Bound::Unbounded => {}
1055                    }
1056                    match upper_bound {
1057                        Bound::Included(val) => {
1058                            if cond.default_cmp(val).is_gt() {
1059                                // cond > val
1060                                return false;
1061                            }
1062                        }
1063                        Bound::Excluded(val) => {
1064                            if cond.default_cmp(val).is_ge() {
1065                                // cond >= val
1066                                return false;
1067                            }
1068                        }
1069                        Bound::Unbounded => {}
1070                    }
1071                    true
1072                } else {
1073                    is_extract_null
1074                }
1075            })
1076            .collect()
1077    }
1078
1079    /// Split the condition expressions into `N` groups.
1080    /// An expression `expr` is in the `i`-th group if `f(expr)==i`.
1081    ///
1082    /// # Panics
1083    /// Panics if `f(expr)>=N`.
1084    #[must_use]
1085    pub fn group_by<F, const N: usize>(self, f: F) -> [Self; N]
1086    where
1087        F: Fn(&ExprImpl) -> usize,
1088    {
1089        const EMPTY: Vec<ExprImpl> = vec![];
1090        let mut groups = [EMPTY; N];
1091        for (key, group) in &self.conjunctions.into_iter().chunk_by(|expr| {
1092            // i-th group
1093            let i = f(expr);
1094            assert!(i < N);
1095            i
1096        }) {
1097            groups[key].extend(group);
1098        }
1099
1100        groups.map(|group| Condition {
1101            conjunctions: group,
1102        })
1103    }
1104
1105    #[must_use]
1106    pub fn rewrite_expr(self, rewriter: &mut (impl ExprRewriter + ?Sized)) -> Self {
1107        Self {
1108            conjunctions: self
1109                .conjunctions
1110                .into_iter()
1111                .map(|expr| rewriter.rewrite_expr(expr))
1112                .collect(),
1113        }
1114        .simplify()
1115    }
1116
1117    pub fn visit_expr<V: ExprVisitor + ?Sized>(&self, visitor: &mut V) {
1118        self.conjunctions
1119            .iter()
1120            .for_each(|expr| visitor.visit_expr(expr));
1121    }
1122
1123    pub fn visit_expr_mut(&mut self, mutator: &mut (impl ExprMutator + ?Sized)) {
1124        self.conjunctions
1125            .iter_mut()
1126            .for_each(|expr| mutator.visit_expr(expr))
1127    }
1128
1129    /// Simplify conditions
1130    /// It simplify conditions by applying constant folding and removing unnecessary conjunctions
1131    fn simplify(self) -> Self {
1132        // boolean constant folding
1133        let conjunctions: Vec<_> = self
1134            .conjunctions
1135            .into_iter()
1136            .map(push_down_not)
1137            .map(fold_boolean_constant)
1138            .map(column_self_eq_eliminate)
1139            .flat_map(to_conjunctions)
1140            .collect();
1141        let mut res: Vec<ExprImpl> = Vec::new();
1142        let mut visited: HashSet<ExprImpl> = HashSet::new();
1143        for expr in conjunctions {
1144            // factorization_expr requires hash-able ExprImpl
1145            if !expr.has_subquery() {
1146                let results_of_factorization = factorization_expr(expr);
1147                res.extend(
1148                    results_of_factorization
1149                        .clone()
1150                        .into_iter()
1151                        .filter(|expr| !visited.contains(expr)),
1152                );
1153                visited.extend(results_of_factorization);
1154            } else {
1155                // for subquery, simply give up factorization
1156                res.push(expr);
1157            }
1158        }
1159        // remove all constant boolean `true`
1160        res.retain(|expr| {
1161            if let Some(v) = try_get_bool_constant(expr)
1162                && v
1163            {
1164                false
1165            } else {
1166                true
1167            }
1168        });
1169        // if there is a `false` in conjunctions, the whole condition will be `false`
1170        for expr in &mut res {
1171            if let Some(v) = try_get_bool_constant(expr)
1172                && !v
1173            {
1174                res.clear();
1175                res.push(ExprImpl::literal_bool(false));
1176                break;
1177            }
1178        }
1179        Self { conjunctions: res }
1180    }
1181}
1182
1183pub struct ConditionDisplay<'a> {
1184    pub condition: &'a Condition,
1185    pub input_schema: &'a Schema,
1186}
1187
1188impl ConditionDisplay<'_> {
1189    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1190        if self.condition.always_true() {
1191            write!(f, "true")
1192        } else {
1193            write!(
1194                f,
1195                "{}",
1196                self.condition
1197                    .conjunctions
1198                    .iter()
1199                    .format_with(" AND ", |expr, f| {
1200                        f(&ExprDisplay {
1201                            expr,
1202                            input_schema: self.input_schema,
1203                        })
1204                    })
1205            )
1206        }
1207    }
1208}
1209
1210impl fmt::Display for ConditionDisplay<'_> {
1211    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1212        self.fmt(f)
1213    }
1214}
1215
1216impl fmt::Debug for ConditionDisplay<'_> {
1217    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1218        self.fmt(f)
1219    }
1220}
1221
1222/// `cast_compare` can be summarized as casting to target type which can be compared but can't be
1223/// cast implicitly to, like:
1224/// 1. bigger range -> smaller range in same type, e.g. int64 -> int32
1225/// 2. different type, e.g. float type -> integral type
1226mod cast_compare {
1227    use risingwave_common::types::DataType;
1228
1229    use crate::expr::{Expr, ExprImpl, ExprType};
1230
1231    enum ShrinkResult {
1232        OutUpperBound,
1233        OutLowerBound,
1234        InRange(ExprImpl),
1235    }
1236
1237    pub enum ResultForEq {
1238        Success(ExprImpl),
1239        NeverEqual,
1240    }
1241
1242    pub enum ResultForCmp {
1243        Success(ExprImpl),
1244        OutUpperBound,
1245        OutLowerBound,
1246    }
1247
1248    pub fn cast_compare_for_eq(const_expr: ExprImpl, target: DataType) -> Result<ResultForEq, ()> {
1249        match (const_expr.return_type(), &target) {
1250            (DataType::Int64, DataType::Int32)
1251            | (DataType::Int64, DataType::Int16)
1252            | (DataType::Int32, DataType::Int16) => match shrink_integral(const_expr, target)? {
1253                ShrinkResult::InRange(expr) => Ok(ResultForEq::Success(expr)),
1254                ShrinkResult::OutUpperBound | ShrinkResult::OutLowerBound => {
1255                    Ok(ResultForEq::NeverEqual)
1256                }
1257            },
1258            _ => Err(()),
1259        }
1260    }
1261
1262    pub fn cast_compare_for_cmp(
1263        const_expr: ExprImpl,
1264        target: DataType,
1265        _op: ExprType,
1266    ) -> Result<ResultForCmp, ()> {
1267        match (const_expr.return_type(), &target) {
1268            (DataType::Int64, DataType::Int32)
1269            | (DataType::Int64, DataType::Int16)
1270            | (DataType::Int32, DataType::Int16) => match shrink_integral(const_expr, target)? {
1271                ShrinkResult::InRange(expr) => Ok(ResultForCmp::Success(expr)),
1272                ShrinkResult::OutUpperBound => Ok(ResultForCmp::OutUpperBound),
1273                ShrinkResult::OutLowerBound => Ok(ResultForCmp::OutLowerBound),
1274            },
1275            _ => Err(()),
1276        }
1277    }
1278
1279    fn shrink_integral(const_expr: ExprImpl, target: DataType) -> Result<ShrinkResult, ()> {
1280        let (upper_bound, lower_bound) = match (const_expr.return_type(), &target) {
1281            (DataType::Int64, DataType::Int32) => (i32::MAX as i64, i32::MIN as i64),
1282            (DataType::Int64, DataType::Int16) | (DataType::Int32, DataType::Int16) => {
1283                (i16::MAX as i64, i16::MIN as i64)
1284            }
1285            _ => unreachable!(),
1286        };
1287        match const_expr.fold_const().map_err(|_| ())? {
1288            Some(scalar) => {
1289                let value = scalar.as_integral();
1290                if value > upper_bound {
1291                    Ok(ShrinkResult::OutUpperBound)
1292                } else if value < lower_bound {
1293                    Ok(ShrinkResult::OutLowerBound)
1294                } else {
1295                    Ok(ShrinkResult::InRange(
1296                        const_expr.cast_explicit(&target).unwrap(),
1297                    ))
1298                }
1299            }
1300            None => Ok(ShrinkResult::InRange(
1301                const_expr.cast_explicit(&target).unwrap(),
1302            )),
1303        }
1304    }
1305}
1306
1307#[cfg(test)]
1308mod tests {
1309    use rand::Rng;
1310
1311    use super::*;
1312
1313    #[test]
1314    fn test_split() {
1315        let left_col_num = 3;
1316        let right_col_num = 2;
1317
1318        let ty = DataType::Int32;
1319
1320        let mut rng = rand::rng();
1321
1322        let left: ExprImpl = FunctionCall::new(
1323            ExprType::LessThanOrEqual,
1324            vec![
1325                InputRef::new(rng.random_range(0..left_col_num), ty.clone()).into(),
1326                InputRef::new(rng.random_range(0..left_col_num), ty.clone()).into(),
1327            ],
1328        )
1329        .unwrap()
1330        .into();
1331
1332        let right: ExprImpl = FunctionCall::new(
1333            ExprType::LessThan,
1334            vec![
1335                InputRef::new(
1336                    rng.random_range(left_col_num..left_col_num + right_col_num),
1337                    ty.clone(),
1338                )
1339                .into(),
1340                InputRef::new(
1341                    rng.random_range(left_col_num..left_col_num + right_col_num),
1342                    ty.clone(),
1343                )
1344                .into(),
1345            ],
1346        )
1347        .unwrap()
1348        .into();
1349
1350        let other: ExprImpl = FunctionCall::new(
1351            ExprType::GreaterThan,
1352            vec![
1353                InputRef::new(rng.random_range(0..left_col_num), ty.clone()).into(),
1354                InputRef::new(
1355                    rng.random_range(left_col_num..left_col_num + right_col_num),
1356                    ty,
1357                )
1358                .into(),
1359            ],
1360        )
1361        .unwrap()
1362        .into();
1363
1364        let cond = Condition::with_expr(other.clone())
1365            .and(Condition::with_expr(right.clone()))
1366            .and(Condition::with_expr(left.clone()));
1367
1368        let res = cond.split(left_col_num, right_col_num);
1369
1370        assert_eq!(res.0.conjunctions, vec![left]);
1371        assert_eq!(res.1.conjunctions, vec![right]);
1372        assert_eq!(res.2.conjunctions, vec![other]);
1373    }
1374
1375    #[test]
1376    fn test_self_eq_eliminate() {
1377        let left_col_num = 3;
1378        let right_col_num = 2;
1379
1380        let ty = DataType::Int32;
1381
1382        let mut rng = rand::rng();
1383
1384        let x: ExprImpl = InputRef::new(rng.random_range(0..left_col_num), ty.clone()).into();
1385
1386        let left: ExprImpl = FunctionCall::new(ExprType::Equal, vec![x.clone(), x.clone()])
1387            .unwrap()
1388            .into();
1389
1390        let right: ExprImpl = FunctionCall::new(
1391            ExprType::LessThan,
1392            vec![
1393                InputRef::new(
1394                    rng.random_range(left_col_num..left_col_num + right_col_num),
1395                    ty.clone(),
1396                )
1397                .into(),
1398                InputRef::new(
1399                    rng.random_range(left_col_num..left_col_num + right_col_num),
1400                    ty.clone(),
1401                )
1402                .into(),
1403            ],
1404        )
1405        .unwrap()
1406        .into();
1407
1408        let other: ExprImpl = FunctionCall::new(
1409            ExprType::GreaterThan,
1410            vec![
1411                InputRef::new(rng.random_range(0..left_col_num), ty.clone()).into(),
1412                InputRef::new(
1413                    rng.random_range(left_col_num..left_col_num + right_col_num),
1414                    ty,
1415                )
1416                .into(),
1417            ],
1418        )
1419        .unwrap()
1420        .into();
1421
1422        let cond = Condition::with_expr(other.clone())
1423            .and(Condition::with_expr(right.clone()))
1424            .and(Condition::with_expr(left.clone()));
1425
1426        let res = cond.split(left_col_num, right_col_num);
1427
1428        let left_res = FunctionCall::new(ExprType::IsNotNull, vec![x])
1429            .unwrap()
1430            .into();
1431
1432        assert_eq!(res.0.conjunctions, vec![left_res]);
1433        assert_eq!(res.1.conjunctions, vec![right]);
1434        assert_eq!(res.2.conjunctions, vec![other]);
1435    }
1436}