risingwave_hummock_sdk/compaction_group/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod hummock_version_ext;
use parse_display::Display;
use crate::CompactionGroupId;
pub type StateTableId = u32;
/// A compaction task's `StaticCompactionGroupId` indicates the compaction group that all its input
/// SSTs belong to.
#[derive(Display)]
pub enum StaticCompactionGroupId {
/// Create a new compaction group.
NewCompactionGroup = 0,
/// All shared buffer local compaction task goes to here. Meta service will never see this
/// value. Note that currently we've restricted the compaction task's input by `via
/// compact_shared_buffer_by_compaction_group`
SharedBuffer = 1,
/// All states goes to here by default.
StateDefault = 2,
/// All MVs goes to here.
MaterializedView = 3,
/// Larger than any `StaticCompactionGroupId`.
End = 4,
}
impl From<StaticCompactionGroupId> for CompactionGroupId {
fn from(cg: StaticCompactionGroupId) -> Self {
cg as CompactionGroupId
}
}
/// The split will follow the following rules:
/// 1. Ssts with `split_key` will be split into two separate ssts and their `key_range` will be changed `sst_1`: [`sst.key_range.right`, `split_key`) `sst_2`: [`split_key`, `sst.key_range.right`].
/// 2. Currently only `vnode` 0 and `vnode` max is supported.
/// 3. Due to the above rule, `vnode` max will be rewritten as `table_id` + 1, vnode 0
pub mod group_split {
use std::cmp::Ordering;
use std::collections::BTreeSet;
use bytes::Bytes;
use risingwave_common::catalog::TableId;
use risingwave_common::hash::VirtualNode;
use risingwave_pb::hummock::PbLevelType;
use super::hummock_version_ext::insert_new_sub_level;
use super::StateTableId;
use crate::key::{FullKey, TableKey};
use crate::key_range::KeyRange;
use crate::level::{Level, Levels};
use crate::sstable_info::SstableInfo;
use crate::{can_concat, HummockEpoch, KeyComparator};
// By default, the split key is constructed with vnode = 0 and epoch = MAX, so that we can split table_id to the right group
pub fn build_split_key(table_id: StateTableId, vnode: VirtualNode) -> Bytes {
build_split_full_key(table_id, vnode).encode().into()
}
/// generate a full key for convenience to get the `table_id` and `vnode`
pub fn build_split_full_key(
mut table_id: StateTableId,
mut vnode: VirtualNode,
) -> FullKey<Vec<u8>> {
if VirtualNode::MAX_REPRESENTABLE == vnode {
// Modify `table_id` to `next_table_id` to satisfy the `split_to_right`` rule, so that the `table_id`` originally passed in will be split to left.
table_id = table_id.strict_add(1);
vnode = VirtualNode::ZERO;
}
FullKey::new(
TableId::from(table_id),
TableKey(vnode.to_be_bytes().to_vec()),
HummockEpoch::MAX,
)
}
#[derive(Debug, PartialEq, Clone)]
pub enum SstSplitType {
Left,
Right,
Both,
}
/// Determine whether the SST needs to be split, and if so, which side to split.
pub fn need_to_split(sst: &SstableInfo, split_key: Bytes) -> SstSplitType {
let key_range = &sst.key_range;
// 1. compare left
if KeyComparator::compare_encoded_full_key(&split_key, &key_range.left).is_le() {
return SstSplitType::Right;
}
// 2. compare right
if key_range.right_exclusive {
if KeyComparator::compare_encoded_full_key(&split_key, &key_range.right).is_ge() {
return SstSplitType::Left;
}
} else if KeyComparator::compare_encoded_full_key(&split_key, &key_range.right).is_gt() {
return SstSplitType::Left;
}
SstSplitType::Both
}
/// Split the SST into two parts based on the split key.
/// The left part is the original SST, and the right part is the new SST.
/// The split key is exclusive for the left part and inclusive for the right part.
/// The `table_ids` of the new SST are calculated based on the split key.
/// e.g.
/// `sst.table_ids` = [1, 2, 3, 4, 5, 6, 7, 8, 9], `split_key` = (`table_id` = 5, vnode = 0)
/// then the result:
/// sst1 {
/// `sst_id`: `new_sst_id + 1`,
/// `table_ids`: [1, 2, 3, 4],
/// `key_range`: [left, `split_key`),
/// `sst_size`: `left_size`,
/// }
/// sst2 {
/// `sst_id`: `new_sst_id`,
/// `table_ids`: [5, 6, 7, 8, 9],
/// `key_range`: [`split_key`, right],
/// `sst_size`: `right_size`,
/// }
pub fn split_sst(
mut origin_sst_info: SstableInfo,
new_sst_id: &mut u64,
split_key: Bytes,
left_size: u64,
right_size: u64,
) -> (Option<SstableInfo>, Option<SstableInfo>) {
let mut branch_table_info = origin_sst_info.clone();
branch_table_info.sst_id = *new_sst_id;
*new_sst_id += 1;
origin_sst_info.sst_id = *new_sst_id;
*new_sst_id += 1;
let (key_range_l, key_range_r) = {
let key_range = &origin_sst_info.key_range;
let l = KeyRange {
left: key_range.left.clone(),
right: split_key.clone(),
right_exclusive: true,
};
let r = KeyRange {
left: split_key.clone(),
right: key_range.right.clone(),
right_exclusive: key_range.right_exclusive,
};
(l, r)
};
let (table_ids_l, table_ids_r) =
split_table_ids_with_split_key(&origin_sst_info.table_ids, split_key.clone());
// rebuild the key_range and size and sstable file size
{
// origin_sst_info
origin_sst_info.key_range = key_range_l;
origin_sst_info.sst_size = left_size;
origin_sst_info.table_ids = table_ids_l;
}
{
// new sst
branch_table_info.key_range = key_range_r;
branch_table_info.sst_size = right_size;
branch_table_info.table_ids = table_ids_r;
}
// This function does not make any assumptions about the incoming sst, so add some judgement to ensure that the generated sst meets the restrictions.
if origin_sst_info.table_ids.is_empty() {
(None, Some(branch_table_info))
} else if branch_table_info.table_ids.is_empty() {
(Some(origin_sst_info), None)
} else if KeyComparator::compare_encoded_full_key(
&origin_sst_info.key_range.left,
&origin_sst_info.key_range.right,
)
.is_eq()
{
// avoid empty key_range of origin_sst
(None, Some(branch_table_info))
} else {
(Some(origin_sst_info), Some(branch_table_info))
}
}
/// The old split sst logic with `table_ids`
/// This function is used to split the sst into two parts based on the `table_ids`.
/// In contrast to `split_sst`, this function does not modify the `key_range` and does not guarantee that the split ssts can be merged, which needs to be guaranteed by the caller.
pub fn split_sst_with_table_ids(
sst_info: &mut SstableInfo,
new_sst_id: &mut u64,
old_sst_size: u64,
new_sst_size: u64,
new_table_ids: Vec<u32>,
) -> SstableInfo {
let mut branch_table_info = sst_info.clone();
branch_table_info.sst_id = *new_sst_id;
branch_table_info.sst_size = new_sst_size;
*new_sst_id += 1;
sst_info.sst_id = *new_sst_id;
sst_info.sst_size = old_sst_size;
*new_sst_id += 1;
{
// related github.com/risingwavelabs/risingwave/pull/17898/
// This is a temporary implementation that will update `table_ids`` based on the new split rule after PR 17898
// sst_info.table_ids = vec[1, 2, 3];
// new_table_ids = vec[2, 3, 4];
// branch_table_info.table_ids = vec[1, 2, 3] ∩ vec[2, 3, 4] = vec[2, 3]
let set1: BTreeSet<_> = sst_info.table_ids.iter().cloned().collect();
let set2: BTreeSet<_> = new_table_ids.into_iter().collect();
let intersection: Vec<_> = set1.intersection(&set2).cloned().collect();
// Update table_ids
branch_table_info.table_ids = intersection;
sst_info
.table_ids
.retain(|table_id| !branch_table_info.table_ids.contains(table_id));
}
branch_table_info
}
// Should avoid split same table_id into two groups
pub fn split_table_ids_with_split_key(
table_ids: &Vec<u32>,
split_key: Bytes,
) -> (Vec<u32>, Vec<u32>) {
assert!(table_ids.is_sorted());
let split_full_key = FullKey::decode(&split_key);
let split_user_key = split_full_key.user_key;
let vnode = split_user_key.get_vnode_id();
let table_id = split_user_key.table_id.table_id();
split_table_ids_with_table_id_and_vnode(table_ids, table_id, vnode)
}
pub fn split_table_ids_with_table_id_and_vnode(
table_ids: &Vec<u32>,
table_id: StateTableId,
vnode: usize,
) -> (Vec<u32>, Vec<u32>) {
assert!(table_ids.is_sorted());
assert_eq!(VirtualNode::ZERO, VirtualNode::from_index(vnode));
let pos = table_ids.partition_point(|&id| id < table_id);
(table_ids[..pos].to_vec(), table_ids[pos..].to_vec())
}
pub fn get_split_pos(sstables: &Vec<SstableInfo>, split_key: Bytes) -> usize {
sstables
.partition_point(|sst| {
KeyComparator::compare_encoded_full_key(&sst.key_range.left, &split_key).is_lt()
})
.saturating_sub(1)
}
/// Merge the right levels into the left levels.
pub fn merge_levels(left_levels: &mut Levels, right_levels: Levels) {
let right_l0 = right_levels.l0;
let mut max_left_sub_level_id = left_levels
.l0
.sub_levels
.iter()
.map(|sub_level| sub_level.sub_level_id + 1)
.max()
.unwrap_or(0); // If there are no sub levels, the max sub level id is 0.
let need_rewrite_right_sub_level_id = max_left_sub_level_id != 0;
for mut right_sub_level in right_l0.sub_levels {
// Rewrtie the sub level id of right sub level to avoid conflict with left sub levels. (conflict level type)
// e.g. left sub levels: [0, 1, 2], right sub levels: [0, 1, 2], after rewrite, right sub levels: [3, 4, 5]
if need_rewrite_right_sub_level_id {
right_sub_level.sub_level_id = max_left_sub_level_id;
max_left_sub_level_id += 1;
}
insert_new_sub_level(
&mut left_levels.l0,
right_sub_level.sub_level_id,
right_sub_level.level_type,
right_sub_level.table_infos,
None,
);
}
assert!(
left_levels
.l0
.sub_levels
.is_sorted_by_key(|sub_level| sub_level.sub_level_id),
"{}",
format!("left_levels.l0.sub_levels: {:?}", left_levels.l0.sub_levels)
);
// Reinitialise `vnode_partition_count` to avoid misaligned hierarchies
// caused by the merge of different compaction groups.(picker might reject the different `vnode_partition_count` sub_level to compact)
left_levels
.l0
.sub_levels
.iter_mut()
.for_each(|sub_level| sub_level.vnode_partition_count = 0);
for (idx, level) in right_levels.levels.into_iter().enumerate() {
if level.table_infos.is_empty() {
continue;
}
let insert_table_infos = level.table_infos;
left_levels.levels[idx].total_file_size += insert_table_infos
.iter()
.map(|sst| sst.sst_size)
.sum::<u64>();
left_levels.levels[idx].uncompressed_file_size += insert_table_infos
.iter()
.map(|sst| sst.uncompressed_file_size)
.sum::<u64>();
left_levels.levels[idx]
.table_infos
.extend(insert_table_infos);
left_levels.levels[idx]
.table_infos
.sort_by(|sst1, sst2| sst1.key_range.cmp(&sst2.key_range));
assert!(
can_concat(&left_levels.levels[idx].table_infos),
"{}",
format!(
"left-group {} right-group {} left_levels.levels[{}].table_infos: {:?} level_idx {:?}",
left_levels.group_id,
right_levels.group_id,
idx,
left_levels.levels[idx].table_infos,
left_levels.levels[idx].level_idx
)
);
}
}
// When `insert_hint` is `Ok(idx)`, it means that the sub level `idx` in `target_l0`
// will extend these SSTs. When `insert_hint` is `Err(idx)`, it
// means that we will add a new sub level `idx` into `target_l0`.
pub fn get_sub_level_insert_hint(
target_levels: &Vec<Level>,
sub_level: &Level,
) -> Result<usize, usize> {
for (idx, other) in target_levels.iter().enumerate() {
match other.sub_level_id.cmp(&sub_level.sub_level_id) {
Ordering::Less => {}
Ordering::Equal => {
return Ok(idx);
}
Ordering::Greater => {
return Err(idx);
}
}
}
Err(target_levels.len())
}
/// Split the SSTs in the level according to the split key.
pub fn split_sst_info_for_level_v2(
level: &mut Level,
new_sst_id: &mut u64,
split_key: Bytes,
) -> Vec<SstableInfo> {
if level.table_infos.is_empty() {
return vec![];
}
let mut insert_table_infos = vec![];
if level.level_type == PbLevelType::Overlapping {
level.table_infos.retain_mut(|sst| {
let sst_split_type = need_to_split(sst, split_key.clone());
match sst_split_type {
SstSplitType::Left => true,
SstSplitType::Right => {
insert_table_infos.push(sst.clone());
false
}
SstSplitType::Both => {
let (left, right) = split_sst(
sst.clone(),
new_sst_id,
split_key.clone(),
sst.sst_size / 2,
sst.sst_size / 2,
);
if let Some(branch_sst) = right {
insert_table_infos.push(branch_sst);
}
if left.is_some() {
*sst = left.unwrap();
true
} else {
false
}
}
}
});
} else {
let pos = get_split_pos(&level.table_infos, split_key.clone());
if pos >= level.table_infos.len() {
return insert_table_infos;
}
let sst_split_type = need_to_split(&level.table_infos[pos], split_key.clone());
match sst_split_type {
SstSplitType::Left => {
insert_table_infos.extend_from_slice(&level.table_infos[pos + 1..]);
level.table_infos = level.table_infos[0..=pos].to_vec();
}
SstSplitType::Right => {
assert_eq!(0, pos);
insert_table_infos.extend_from_slice(&level.table_infos[pos..]); // the sst at pos has been split to the right
level.table_infos.clear();
}
SstSplitType::Both => {
// split the sst
let sst = level.table_infos[pos].clone();
let sst_size = sst.sst_size;
let (left, right) = split_sst(
sst,
new_sst_id,
split_key.clone(),
sst_size / 2,
sst_size / 2,
);
if let Some(branch_sst) = right {
insert_table_infos.push(branch_sst);
}
let right_start = pos + 1;
let left_end = pos;
// the sst at pos has been split to both left and right
// the branched sst has been inserted to the `insert_table_infos`
insert_table_infos.extend_from_slice(&level.table_infos[right_start..]);
level.table_infos = level.table_infos[0..=left_end].to_vec();
if let Some(origin_sst) = left {
// replace the origin sst with the left part
level.table_infos[left_end] = origin_sst;
} else {
level.table_infos.pop();
}
}
};
}
insert_table_infos
}
}
#[cfg(test)]
mod tests {
use risingwave_common::hash::VirtualNode;
#[test]
fn test_split_table_ids() {
let table_ids = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
let (left, right) = super::group_split::split_table_ids_with_table_id_and_vnode(
&table_ids,
5,
VirtualNode::ZERO.to_index(),
);
assert_eq!(left, vec![1, 2, 3, 4]);
assert_eq!(right, vec![5, 6, 7, 8, 9]);
// test table_id not in the table_ids
let (left, right) = super::group_split::split_table_ids_with_table_id_and_vnode(
&table_ids,
10,
VirtualNode::ZERO.to_index(),
);
assert_eq!(left, vec![1, 2, 3, 4, 5, 6, 7, 8, 9]);
assert!(right.is_empty());
let (left, right) = super::group_split::split_table_ids_with_table_id_and_vnode(
&table_ids,
0,
VirtualNode::ZERO.to_index(),
);
assert!(left.is_empty());
assert_eq!(right, vec![1, 2, 3, 4, 5, 6, 7, 8, 9]);
}
#[test]
fn test_split_table_ids_with_split_key() {
let table_ids = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
let split_key = super::group_split::build_split_key(5, VirtualNode::ZERO);
let (left, right) =
super::group_split::split_table_ids_with_split_key(&table_ids, split_key);
assert_eq!(left, vec![1, 2, 3, 4]);
assert_eq!(right, vec![5, 6, 7, 8, 9]);
}
}