risingwave_hummock_sdk/
key.rs

1// Copyright 2025 RisingWave Labs
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15use std::borrow::Borrow;
16use std::cmp::Ordering;
17use std::fmt::Debug;
18use std::iter::once;
19use std::ops::Bound::*;
20use std::ops::{Bound, Deref, DerefMut, RangeBounds};
21use std::ptr;
22
23use bytes::{Buf, BufMut, Bytes, BytesMut};
24use risingwave_common::catalog::TableId;
25use risingwave_common::hash::VirtualNode;
26use risingwave_common_estimate_size::EstimateSize;
27
28use crate::{EpochWithGap, HummockEpoch};
29
30pub const EPOCH_LEN: usize = std::mem::size_of::<HummockEpoch>();
31pub const TABLE_PREFIX_LEN: usize = std::mem::size_of::<u32>();
32// Max length for key overlap and diff length. See KeyPrefix::encode.
33pub const MAX_KEY_LEN: usize = u16::MAX as usize;
34
35pub type KeyPayloadType = Bytes;
36pub type TableKeyRange = (
37    Bound<TableKey<KeyPayloadType>>,
38    Bound<TableKey<KeyPayloadType>>,
39);
40pub type UserKeyRange = (
41    Bound<UserKey<KeyPayloadType>>,
42    Bound<UserKey<KeyPayloadType>>,
43);
44pub type UserKeyRangeRef<'a> = (Bound<UserKey<&'a [u8]>>, Bound<UserKey<&'a [u8]>>);
45pub type FullKeyRange = (
46    Bound<FullKey<KeyPayloadType>>,
47    Bound<FullKey<KeyPayloadType>>,
48);
49
50pub fn is_empty_key_range(key_range: &TableKeyRange) -> bool {
51    match key_range {
52        (Included(start), Excluded(end)) => start == end,
53        _ => false,
54    }
55}
56
57/// Returns left inclusive and right exclusive vnode index of the given range.
58///
59/// # Vnode count unawareness
60///
61/// Note that this function is not aware of the vnode count that is actually used in this table.
62/// For example, if the total vnode count is 256, `Unbounded` can be a correct end bound for vnode 255,
63/// but this function will still return `Excluded(256)`.
64///
65/// See also [`vnode`] and [`end_bound_of_vnode`] which hold such invariant.
66pub fn vnode_range(range: &TableKeyRange) -> (usize, usize) {
67    let (left, right) = range;
68    let left = match left {
69        Included(key) | Excluded(key) => key.vnode_part().to_index(),
70        Unbounded => 0,
71    };
72    let right = match right {
73        Included(key) => key.vnode_part().to_index() + 1,
74        Excluded(key) => {
75            let (vnode, inner_key) = key.split_vnode();
76            if inner_key.is_empty() {
77                // When the exclusive end key range contains only a vnode,
78                // the whole vnode is excluded.
79                vnode.to_index()
80            } else {
81                vnode.to_index() + 1
82            }
83        }
84        Unbounded => VirtualNode::MAX_REPRESENTABLE.to_index() + 1,
85    };
86    (left, right)
87}
88
89/// Ensure there is only one vnode involved in table key range and return the vnode.
90///
91/// # Vnode count unawareness
92///
93/// Note that this function is not aware of the vnode count that is actually used in this table.
94/// For example, if the total vnode count is 256, `Unbounded` can be a correct end bound for vnode 255,
95/// but this function will still require `Excluded(256)`.
96///
97/// See also [`vnode_range`] and [`end_bound_of_vnode`] which hold such invariant.
98pub fn vnode(range: &TableKeyRange) -> VirtualNode {
99    let (l, r_exclusive) = vnode_range(range);
100    assert_eq!(r_exclusive - l, 1);
101    VirtualNode::from_index(l)
102}
103
104/// Converts user key to full key by appending `epoch` to the user key.
105pub fn key_with_epoch(mut user_key: Vec<u8>, epoch: HummockEpoch) -> Vec<u8> {
106    let res = epoch.to_be();
107    user_key.reserve(EPOCH_LEN);
108    let buf = user_key.chunk_mut();
109
110    // TODO: check whether this hack improves performance
111    unsafe {
112        ptr::copy_nonoverlapping(
113            &res as *const _ as *const u8,
114            buf.as_mut_ptr() as *mut _,
115            EPOCH_LEN,
116        );
117        user_key.advance_mut(EPOCH_LEN);
118    }
119
120    user_key
121}
122
123/// Splits a full key into its user key part and epoch part.
124#[inline]
125pub fn split_key_epoch(full_key: &[u8]) -> (&[u8], &[u8]) {
126    let pos = full_key
127        .len()
128        .checked_sub(EPOCH_LEN)
129        .unwrap_or_else(|| panic!("bad full key format: {:?}", full_key));
130    full_key.split_at(pos)
131}
132
133/// Extract encoded [`UserKey`] from encoded [`FullKey`] without epoch part
134pub fn user_key(full_key: &[u8]) -> &[u8] {
135    split_key_epoch(full_key).0
136}
137
138/// Extract table key from encoded [`UserKey`] without table id part
139pub fn table_key(user_key: &[u8]) -> &[u8] {
140    &user_key[TABLE_PREFIX_LEN..]
141}
142
143#[inline(always)]
144/// Extract encoded [`UserKey`] from encoded [`FullKey`] but allow empty slice
145pub fn get_user_key(full_key: &[u8]) -> Vec<u8> {
146    if full_key.is_empty() {
147        vec![]
148    } else {
149        user_key(full_key).to_vec()
150    }
151}
152
153/// Extract table id from encoded [`FullKey`]
154#[inline(always)]
155pub fn get_table_id(full_key: &[u8]) -> u32 {
156    let mut buf = full_key;
157    buf.get_u32()
158}
159
160// Copyright 2016 TiKV Project Authors. Licensed under Apache-2.0.
161
162/// Computes the next key of the given key.
163///
164/// If the key has no successor key (e.g. the input is "\xff\xff"), the result
165/// would be an empty vector.
166///
167/// # Examples
168///
169/// ```rust
170/// use risingwave_hummock_sdk::key::next_key;
171/// assert_eq!(next_key(b"123"), b"124");
172/// assert_eq!(next_key(b"12\xff"), b"13");
173/// assert_eq!(next_key(b"\xff\xff"), b"");
174/// assert_eq!(next_key(b"\xff\xfe"), b"\xff\xff");
175/// assert_eq!(next_key(b"T"), b"U");
176/// assert_eq!(next_key(b""), b"");
177/// ```
178pub fn next_key(key: &[u8]) -> Vec<u8> {
179    if let Some((s, e)) = next_key_no_alloc(key) {
180        let mut res = Vec::with_capacity(s.len() + 1);
181        res.extend_from_slice(s);
182        res.push(e);
183        res
184    } else {
185        Vec::new()
186    }
187}
188
189/// Computes the previous key of the given key.
190///
191/// If the key has no predecessor key (e.g. the input is "\x00\x00"), the result
192/// would be a "\xff\xff" vector.
193///
194/// # Examples
195///
196/// ```rust
197/// use risingwave_hummock_sdk::key::prev_key;
198/// assert_eq!(prev_key(b"123"), b"122");
199/// assert_eq!(prev_key(b"12\x00"), b"11\xff");
200/// assert_eq!(prev_key(b"\x00\x00"), b"\xff\xff");
201/// assert_eq!(prev_key(b"\x00\x01"), b"\x00\x00");
202/// assert_eq!(prev_key(b"T"), b"S");
203/// assert_eq!(prev_key(b""), b"");
204/// ```
205pub fn prev_key(key: &[u8]) -> Vec<u8> {
206    let pos = key.iter().rposition(|b| *b != 0x00);
207    match pos {
208        Some(pos) => {
209            let mut res = Vec::with_capacity(key.len());
210            res.extend_from_slice(&key[0..pos]);
211            res.push(key[pos] - 1);
212            if pos + 1 < key.len() {
213                res.push(b"\xff".to_owned()[0]);
214            }
215            res
216        }
217        None => {
218            vec![0xff; key.len()]
219        }
220    }
221}
222
223fn next_key_no_alloc(key: &[u8]) -> Option<(&[u8], u8)> {
224    let pos = key.iter().rposition(|b| *b != 0xff)?;
225    Some((&key[..pos], key[pos] + 1))
226}
227
228// End Copyright 2016 TiKV Project Authors. Licensed under Apache-2.0.
229
230/// compute the next epoch, and don't change the bytes of the u8 slice.
231/// # Examples
232///
233/// ```rust
234/// use risingwave_hummock_sdk::key::next_epoch;
235/// assert_eq!(next_epoch(b"123"), b"124");
236/// assert_eq!(next_epoch(b"\xff\x00\xff"), b"\xff\x01\x00");
237/// assert_eq!(next_epoch(b"\xff\xff"), b"\x00\x00");
238/// assert_eq!(next_epoch(b"\x00\x00"), b"\x00\x01");
239/// assert_eq!(next_epoch(b"S"), b"T");
240/// assert_eq!(next_epoch(b""), b"");
241/// ```
242pub fn next_epoch(epoch: &[u8]) -> Vec<u8> {
243    let pos = epoch.iter().rposition(|b| *b != 0xff);
244    match pos {
245        Some(mut pos) => {
246            let mut res = Vec::with_capacity(epoch.len());
247            res.extend_from_slice(&epoch[0..pos]);
248            res.push(epoch[pos] + 1);
249            while pos + 1 < epoch.len() {
250                res.push(0x00);
251                pos += 1;
252            }
253            res
254        }
255        None => {
256            vec![0x00; epoch.len()]
257        }
258    }
259}
260
261/// compute the prev epoch, and don't change the bytes of the u8 slice.
262/// # Examples
263///
264/// ```rust
265/// use risingwave_hummock_sdk::key::prev_epoch;
266/// assert_eq!(prev_epoch(b"124"), b"123");
267/// assert_eq!(prev_epoch(b"\xff\x01\x00"), b"\xff\x00\xff");
268/// assert_eq!(prev_epoch(b"\x00\x00"), b"\xff\xff");
269/// assert_eq!(prev_epoch(b"\x00\x01"), b"\x00\x00");
270/// assert_eq!(prev_epoch(b"T"), b"S");
271/// assert_eq!(prev_epoch(b""), b"");
272/// ```
273pub fn prev_epoch(epoch: &[u8]) -> Vec<u8> {
274    let pos = epoch.iter().rposition(|b| *b != 0x00);
275    match pos {
276        Some(mut pos) => {
277            let mut res = Vec::with_capacity(epoch.len());
278            res.extend_from_slice(&epoch[0..pos]);
279            res.push(epoch[pos] - 1);
280            while pos + 1 < epoch.len() {
281                res.push(0xff);
282                pos += 1;
283            }
284            res
285        }
286        None => {
287            vec![0xff; epoch.len()]
288        }
289    }
290}
291
292/// compute the next full key of the given full key
293///
294/// if the `user_key` has no successor key, the result will be a empty vec
295pub fn next_full_key(full_key: &[u8]) -> Vec<u8> {
296    let (user_key, epoch) = split_key_epoch(full_key);
297    let prev_epoch = prev_epoch(epoch);
298    let mut res = Vec::with_capacity(full_key.len());
299    if prev_epoch.cmp(&vec![0xff; prev_epoch.len()]) == Ordering::Equal {
300        let next_user_key = next_key(user_key);
301        if next_user_key.is_empty() {
302            return Vec::new();
303        }
304        res.extend_from_slice(next_user_key.as_slice());
305        res.extend_from_slice(prev_epoch.as_slice());
306        res
307    } else {
308        res.extend_from_slice(user_key);
309        res.extend_from_slice(prev_epoch.as_slice());
310        res
311    }
312}
313
314/// compute the prev full key of the given full key
315///
316/// if the `user_key` has no predecessor key, the result will be a empty vec
317pub fn prev_full_key(full_key: &[u8]) -> Vec<u8> {
318    let (user_key, epoch) = split_key_epoch(full_key);
319    let next_epoch = next_epoch(epoch);
320    let mut res = Vec::with_capacity(full_key.len());
321    if next_epoch.cmp(&vec![0x00; next_epoch.len()]) == Ordering::Equal {
322        let prev_user_key = prev_key(user_key);
323        if prev_user_key.cmp(&vec![0xff; prev_user_key.len()]) == Ordering::Equal {
324            return Vec::new();
325        }
326        res.extend_from_slice(prev_user_key.as_slice());
327        res.extend_from_slice(next_epoch.as_slice());
328        res
329    } else {
330        res.extend_from_slice(user_key);
331        res.extend_from_slice(next_epoch.as_slice());
332        res
333    }
334}
335
336/// [`Unbounded`] if the vnode is the maximum representable value (i.e. [`VirtualNode::MAX_REPRESENTABLE`]),
337/// otherwise [`Excluded`] the next vnode.
338///
339/// Note that this function is not aware of the vnode count that is actually used in this table.
340/// For example, if the total vnode count is 256, `Unbounded` can be a correct end bound for vnode 255,
341/// but this function will still return `Excluded(256)`. See also [`vnode`] and [`vnode_range`] which
342/// rely on such invariant.
343pub fn end_bound_of_vnode(vnode: VirtualNode) -> Bound<Bytes> {
344    if vnode == VirtualNode::MAX_REPRESENTABLE {
345        Unbounded
346    } else {
347        let end_bound_index = vnode.to_index() + 1;
348        Excluded(Bytes::copy_from_slice(
349            &VirtualNode::from_index(end_bound_index).to_be_bytes(),
350        ))
351    }
352}
353
354/// Get the end bound of the given `prefix` when transforming it to a key range.
355pub fn end_bound_of_prefix(prefix: &[u8]) -> Bound<Bytes> {
356    if let Some((s, e)) = next_key_no_alloc(prefix) {
357        let mut buf = BytesMut::with_capacity(s.len() + 1);
358        buf.extend_from_slice(s);
359        buf.put_u8(e);
360        Excluded(buf.freeze())
361    } else {
362        Unbounded
363    }
364}
365
366/// Get the start bound of the given `prefix` when it is excluded from the range.
367pub fn start_bound_of_excluded_prefix(prefix: &[u8]) -> Bound<Bytes> {
368    if let Some((s, e)) = next_key_no_alloc(prefix) {
369        let mut buf = BytesMut::with_capacity(s.len() + 1);
370        buf.extend_from_slice(s);
371        buf.put_u8(e);
372        Included(buf.freeze())
373    } else {
374        panic!("the prefix is the maximum value")
375    }
376}
377
378/// Transform the given `prefix` to a key range.
379pub fn range_of_prefix(prefix: &[u8]) -> (Bound<Bytes>, Bound<Bytes>) {
380    if prefix.is_empty() {
381        (Unbounded, Unbounded)
382    } else {
383        (
384            Included(Bytes::copy_from_slice(prefix)),
385            end_bound_of_prefix(prefix),
386        )
387    }
388}
389
390pub fn prefix_slice_with_vnode(vnode: VirtualNode, slice: &[u8]) -> Bytes {
391    let prefix = vnode.to_be_bytes();
392    let mut buf = BytesMut::with_capacity(prefix.len() + slice.len());
393    buf.extend_from_slice(&prefix);
394    buf.extend_from_slice(slice);
395    buf.freeze()
396}
397
398/// Prepend the `prefix` to the given key `range`.
399pub fn prefixed_range_with_vnode<B: AsRef<[u8]>>(
400    range: impl RangeBounds<B>,
401    vnode: VirtualNode,
402) -> TableKeyRange {
403    let prefixed = |b: &B| -> Bytes { prefix_slice_with_vnode(vnode, b.as_ref()) };
404
405    let start: Bound<Bytes> = match range.start_bound() {
406        Included(b) => Included(prefixed(b)),
407        Excluded(b) => {
408            assert!(!b.as_ref().is_empty());
409            Excluded(prefixed(b))
410        }
411        Unbounded => Included(Bytes::copy_from_slice(&vnode.to_be_bytes())),
412    };
413
414    let end = match range.end_bound() {
415        Included(b) => Included(prefixed(b)),
416        Excluded(b) => {
417            assert!(!b.as_ref().is_empty());
418            Excluded(prefixed(b))
419        }
420        Unbounded => end_bound_of_vnode(vnode),
421    };
422
423    map_table_key_range((start, end))
424}
425
426pub trait SetSlice<S: AsRef<[u8]> + ?Sized> {
427    fn set(&mut self, value: &S);
428}
429
430impl<S: AsRef<[u8]> + ?Sized> SetSlice<S> for Vec<u8> {
431    fn set(&mut self, value: &S) {
432        self.clear();
433        self.extend_from_slice(value.as_ref());
434    }
435}
436
437impl SetSlice<Bytes> for Bytes {
438    fn set(&mut self, value: &Bytes) {
439        *self = value.clone()
440    }
441}
442
443pub trait CopyFromSlice: Send + 'static {
444    fn copy_from_slice(slice: &[u8]) -> Self;
445}
446
447impl CopyFromSlice for Vec<u8> {
448    fn copy_from_slice(slice: &[u8]) -> Self {
449        Vec::from(slice)
450    }
451}
452
453impl CopyFromSlice for Bytes {
454    fn copy_from_slice(slice: &[u8]) -> Self {
455        Bytes::copy_from_slice(slice)
456    }
457}
458
459impl CopyFromSlice for () {
460    fn copy_from_slice(_: &[u8]) -> Self {}
461}
462
463/// [`TableKey`] is an internal concept in storage. It's a wrapper around the key directly from the
464/// user, to make the code clearer and avoid confusion with encoded [`UserKey`] and [`FullKey`].
465///
466/// Its name come from the assumption that Hummock is always accessed by a table-like structure
467/// identified by a [`TableId`].
468#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
469pub struct TableKey<T: AsRef<[u8]>>(pub T);
470
471impl<T: AsRef<[u8]>> Debug for TableKey<T> {
472    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
473        write!(f, "TableKey {{ {} }}", hex::encode(self.0.as_ref()))
474    }
475}
476
477impl<T: AsRef<[u8]>> Deref for TableKey<T> {
478    type Target = T;
479
480    fn deref(&self) -> &Self::Target {
481        &self.0
482    }
483}
484
485impl<T: AsRef<[u8]>> DerefMut for TableKey<T> {
486    fn deref_mut(&mut self) -> &mut Self::Target {
487        &mut self.0
488    }
489}
490
491impl<T: AsRef<[u8]>> AsRef<[u8]> for TableKey<T> {
492    fn as_ref(&self) -> &[u8] {
493        self.0.as_ref()
494    }
495}
496
497impl TableKey<Bytes> {
498    pub fn split_vnode_bytes(&self) -> (VirtualNode, Bytes) {
499        debug_assert!(
500            self.0.len() >= VirtualNode::SIZE,
501            "too short table key: {:?}",
502            self.0.as_ref()
503        );
504        let (vnode, _) = self.0.split_first_chunk::<{ VirtualNode::SIZE }>().unwrap();
505        (
506            VirtualNode::from_be_bytes(*vnode),
507            self.0.slice(VirtualNode::SIZE..),
508        )
509    }
510}
511
512impl<T: AsRef<[u8]>> TableKey<T> {
513    pub fn split_vnode(&self) -> (VirtualNode, &[u8]) {
514        debug_assert!(
515            self.0.as_ref().len() >= VirtualNode::SIZE,
516            "too short table key: {:?}",
517            self.0.as_ref()
518        );
519        let (vnode, inner_key) = self
520            .0
521            .as_ref()
522            .split_first_chunk::<{ VirtualNode::SIZE }>()
523            .unwrap();
524        (VirtualNode::from_be_bytes(*vnode), inner_key)
525    }
526
527    pub fn vnode_part(&self) -> VirtualNode {
528        self.split_vnode().0
529    }
530
531    pub fn key_part(&self) -> &[u8] {
532        self.split_vnode().1
533    }
534
535    pub fn to_ref(&self) -> TableKey<&[u8]> {
536        TableKey(self.0.as_ref())
537    }
538}
539
540impl<T: AsRef<[u8]>> Borrow<[u8]> for TableKey<T> {
541    fn borrow(&self) -> &[u8] {
542        self.0.as_ref()
543    }
544}
545
546impl EstimateSize for TableKey<Bytes> {
547    fn estimated_heap_size(&self) -> usize {
548        self.0.estimated_heap_size()
549    }
550}
551
552impl TableKey<&[u8]> {
553    pub fn copy_into<T: CopyFromSlice + AsRef<[u8]>>(&self) -> TableKey<T> {
554        TableKey(T::copy_from_slice(self.as_ref()))
555    }
556}
557
558#[inline]
559pub fn map_table_key_range(range: (Bound<KeyPayloadType>, Bound<KeyPayloadType>)) -> TableKeyRange {
560    (range.0.map(TableKey), range.1.map(TableKey))
561}
562
563pub fn gen_key_from_bytes(vnode: VirtualNode, payload: &[u8]) -> TableKey<Bytes> {
564    TableKey(Bytes::from(
565        [vnode.to_be_bytes().as_slice(), payload].concat(),
566    ))
567}
568
569pub fn gen_key_from_str(vnode: VirtualNode, payload: &str) -> TableKey<Bytes> {
570    gen_key_from_bytes(vnode, payload.as_bytes())
571}
572
573/// [`UserKey`] is is an internal concept in storage. In the storage interface, user specifies
574/// `table_key` and `table_id` (in `ReadOptions` or `WriteOptions`) as the input. The storage
575/// will group these two values into one struct for convenient filtering.
576///
577/// The encoded format is | `table_id` | `table_key` |.
578#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
579pub struct UserKey<T: AsRef<[u8]>> {
580    // When comparing `UserKey`, we first compare `table_id`, then `table_key`. So the order of
581    // declaration matters.
582    pub table_id: TableId,
583    pub table_key: TableKey<T>,
584}
585
586impl<T: AsRef<[u8]>> Debug for UserKey<T> {
587    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
588        write!(
589            f,
590            "UserKey {{ {}, {:?} }}",
591            self.table_id.table_id, self.table_key
592        )
593    }
594}
595
596impl<T: AsRef<[u8]>> UserKey<T> {
597    pub fn new(table_id: TableId, table_key: TableKey<T>) -> Self {
598        Self {
599            table_id,
600            table_key,
601        }
602    }
603
604    /// Pass the inner type of `table_key` to make the code less verbose.
605    pub fn for_test(table_id: TableId, table_key: T) -> Self {
606        Self {
607            table_id,
608            table_key: TableKey(table_key),
609        }
610    }
611
612    /// Encode in to a buffer.
613    pub fn encode_into(&self, buf: &mut impl BufMut) {
614        buf.put_u32(self.table_id.table_id());
615        buf.put_slice(self.table_key.as_ref());
616    }
617
618    pub fn encode_table_key_into(&self, buf: &mut impl BufMut) {
619        buf.put_slice(self.table_key.as_ref());
620    }
621
622    pub fn encode(&self) -> Vec<u8> {
623        let mut ret = Vec::with_capacity(TABLE_PREFIX_LEN + self.table_key.as_ref().len());
624        self.encode_into(&mut ret);
625        ret
626    }
627
628    pub fn is_empty(&self) -> bool {
629        self.table_key.as_ref().is_empty()
630    }
631
632    /// Get the length of the encoded format.
633    pub fn encoded_len(&self) -> usize {
634        self.table_key.as_ref().len() + TABLE_PREFIX_LEN
635    }
636
637    pub fn get_vnode_id(&self) -> usize {
638        self.table_key.vnode_part().to_index()
639    }
640}
641
642impl<'a> UserKey<&'a [u8]> {
643    /// Construct a [`UserKey`] from a byte slice. Its `table_key` will be a part of the input
644    /// `slice`.
645    pub fn decode(slice: &'a [u8]) -> Self {
646        let table_id: u32 = (&slice[..]).get_u32();
647
648        Self {
649            table_id: TableId::new(table_id),
650            table_key: TableKey(&slice[TABLE_PREFIX_LEN..]),
651        }
652    }
653
654    pub fn to_vec(self) -> UserKey<Vec<u8>> {
655        self.copy_into()
656    }
657
658    pub fn copy_into<T: CopyFromSlice + AsRef<[u8]>>(self) -> UserKey<T> {
659        UserKey {
660            table_id: self.table_id,
661            table_key: TableKey(T::copy_from_slice(self.table_key.0)),
662        }
663    }
664}
665
666impl<T: AsRef<[u8]> + Clone> UserKey<&T> {
667    pub fn cloned(self) -> UserKey<T> {
668        UserKey {
669            table_id: self.table_id,
670            table_key: TableKey(self.table_key.0.clone()),
671        }
672    }
673}
674
675impl<T: AsRef<[u8]>> UserKey<T> {
676    pub fn as_ref(&self) -> UserKey<&[u8]> {
677        UserKey::new(self.table_id, TableKey(self.table_key.as_ref()))
678    }
679}
680
681impl<T: AsRef<[u8]>> UserKey<T> {
682    /// Use this method to override an old `UserKey<Vec<u8>>` with a `UserKey<&[u8]>` to own the
683    /// table key without reallocating a new `UserKey` object.
684    pub fn set<F>(&mut self, other: UserKey<F>)
685    where
686        T: SetSlice<F>,
687        F: AsRef<[u8]>,
688    {
689        self.table_id = other.table_id;
690        self.table_key.0.set(&other.table_key.0);
691    }
692}
693
694impl UserKey<Vec<u8>> {
695    pub fn into_bytes(self) -> UserKey<Bytes> {
696        UserKey {
697            table_id: self.table_id,
698            table_key: TableKey(Bytes::from(self.table_key.0)),
699        }
700    }
701}
702
703/// [`FullKey`] is an internal concept in storage. It associates [`UserKey`] with an epoch.
704///
705/// The encoded format is | `user_key` | `epoch` |.
706#[derive(Clone, Copy, PartialEq, Eq, Hash, Default)]
707pub struct FullKey<T: AsRef<[u8]>> {
708    pub user_key: UserKey<T>,
709    pub epoch_with_gap: EpochWithGap,
710}
711
712impl<T: AsRef<[u8]>> Debug for FullKey<T> {
713    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
714        write!(
715            f,
716            "FullKey {{ {:?}, epoch: {}, epoch_with_gap: {}, spill_offset: {}}}",
717            self.user_key,
718            self.epoch_with_gap.pure_epoch(),
719            self.epoch_with_gap.as_u64(),
720            self.epoch_with_gap.as_u64() - self.epoch_with_gap.pure_epoch(),
721        )
722    }
723}
724
725impl<T: AsRef<[u8]>> FullKey<T> {
726    pub fn new(table_id: TableId, table_key: TableKey<T>, epoch: HummockEpoch) -> Self {
727        Self {
728            user_key: UserKey::new(table_id, table_key),
729            epoch_with_gap: EpochWithGap::new(epoch, 0),
730        }
731    }
732
733    pub fn new_with_gap_epoch(
734        table_id: TableId,
735        table_key: TableKey<T>,
736        epoch_with_gap: EpochWithGap,
737    ) -> Self {
738        Self {
739            user_key: UserKey::new(table_id, table_key),
740            epoch_with_gap,
741        }
742    }
743
744    pub fn from_user_key(user_key: UserKey<T>, epoch: HummockEpoch) -> Self {
745        Self {
746            user_key,
747            epoch_with_gap: EpochWithGap::new_from_epoch(epoch),
748        }
749    }
750
751    /// Pass the inner type of `table_key` to make the code less verbose.
752    pub fn for_test(table_id: TableId, table_key: T, epoch: HummockEpoch) -> Self {
753        Self {
754            user_key: UserKey::for_test(table_id, table_key),
755            epoch_with_gap: EpochWithGap::new(epoch, 0),
756        }
757    }
758
759    /// Encode in to a buffer.
760    pub fn encode_into(&self, buf: &mut impl BufMut) {
761        self.user_key.encode_into(buf);
762        buf.put_u64(self.epoch_with_gap.as_u64());
763    }
764
765    pub fn encode(&self) -> Vec<u8> {
766        let mut buf = Vec::with_capacity(
767            TABLE_PREFIX_LEN + self.user_key.table_key.as_ref().len() + EPOCH_LEN,
768        );
769        self.encode_into(&mut buf);
770        buf
771    }
772
773    // Encode in to a buffer.
774    pub fn encode_into_without_table_id(&self, buf: &mut impl BufMut) {
775        self.user_key.encode_table_key_into(buf);
776        buf.put_u64(self.epoch_with_gap.as_u64());
777    }
778
779    pub fn encode_reverse_epoch(&self) -> Vec<u8> {
780        let mut buf = Vec::with_capacity(
781            TABLE_PREFIX_LEN + self.user_key.table_key.as_ref().len() + EPOCH_LEN,
782        );
783        self.user_key.encode_into(&mut buf);
784        buf.put_u64(u64::MAX - self.epoch_with_gap.as_u64());
785        buf
786    }
787
788    pub fn is_empty(&self) -> bool {
789        self.user_key.is_empty()
790    }
791
792    /// Get the length of the encoded format.
793    pub fn encoded_len(&self) -> usize {
794        self.user_key.encoded_len() + EPOCH_LEN
795    }
796}
797
798impl<'a> FullKey<&'a [u8]> {
799    /// Construct a [`FullKey`] from a byte slice.
800    pub fn decode(slice: &'a [u8]) -> Self {
801        let epoch_pos = slice.len() - EPOCH_LEN;
802        let epoch = (&slice[epoch_pos..]).get_u64();
803
804        Self {
805            user_key: UserKey::decode(&slice[..epoch_pos]),
806            epoch_with_gap: EpochWithGap::from_u64(epoch),
807        }
808    }
809
810    /// Construct a [`FullKey`] from a byte slice without `table_id` encoded.
811    pub fn from_slice_without_table_id(
812        table_id: TableId,
813        slice_without_table_id: &'a [u8],
814    ) -> Self {
815        let epoch_pos = slice_without_table_id.len() - EPOCH_LEN;
816        let epoch = (&slice_without_table_id[epoch_pos..]).get_u64();
817
818        Self {
819            user_key: UserKey::new(table_id, TableKey(&slice_without_table_id[..epoch_pos])),
820            epoch_with_gap: EpochWithGap::from_u64(epoch),
821        }
822    }
823
824    /// Construct a [`FullKey`] from a byte slice.
825    pub fn decode_reverse_epoch(slice: &'a [u8]) -> Self {
826        let epoch_pos = slice.len() - EPOCH_LEN;
827        let epoch = (&slice[epoch_pos..]).get_u64();
828
829        Self {
830            user_key: UserKey::decode(&slice[..epoch_pos]),
831            epoch_with_gap: EpochWithGap::from_u64(u64::MAX - epoch),
832        }
833    }
834
835    pub fn to_vec(self) -> FullKey<Vec<u8>> {
836        self.copy_into()
837    }
838
839    pub fn copy_into<T: CopyFromSlice + AsRef<[u8]>>(self) -> FullKey<T> {
840        FullKey {
841            user_key: self.user_key.copy_into(),
842            epoch_with_gap: self.epoch_with_gap,
843        }
844    }
845}
846
847impl FullKey<Vec<u8>> {
848    /// Calling this method may accidentally cause memory allocation when converting `Vec` into
849    /// `Bytes`
850    pub fn into_bytes(self) -> FullKey<Bytes> {
851        FullKey {
852            epoch_with_gap: self.epoch_with_gap,
853            user_key: self.user_key.into_bytes(),
854        }
855    }
856}
857
858impl<T: AsRef<[u8]>> FullKey<T> {
859    pub fn to_ref(&self) -> FullKey<&[u8]> {
860        FullKey {
861            user_key: self.user_key.as_ref(),
862            epoch_with_gap: self.epoch_with_gap,
863        }
864    }
865}
866
867impl<T: AsRef<[u8]>> FullKey<T> {
868    /// Use this method to override an old `FullKey<Vec<u8>>` with a `FullKey<&[u8]>` to own the
869    /// table key without reallocating a new `FullKey` object.
870    pub fn set<F>(&mut self, other: FullKey<F>)
871    where
872        T: SetSlice<F>,
873        F: AsRef<[u8]>,
874    {
875        self.user_key.set(other.user_key);
876        self.epoch_with_gap = other.epoch_with_gap;
877    }
878}
879
880impl<T: AsRef<[u8]> + Ord + Eq> Ord for FullKey<T> {
881    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
882        // When `user_key` is the same, greater epoch comes first.
883        self.user_key
884            .cmp(&other.user_key)
885            .then_with(|| other.epoch_with_gap.cmp(&self.epoch_with_gap))
886    }
887}
888
889impl<T: AsRef<[u8]> + Ord + Eq> PartialOrd for FullKey<T> {
890    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
891        Some(self.cmp(other))
892    }
893}
894
895pub mod range_delete_backward_compatibility_serde_struct {
896    use bytes::{Buf, BufMut};
897    use risingwave_common::catalog::TableId;
898    use serde::{Deserialize, Serialize};
899
900    #[derive(Clone, Debug, PartialEq, Eq, Deserialize, Serialize)]
901    pub struct TableKey(Vec<u8>);
902
903    #[derive(Clone, Debug, PartialEq, Eq, Deserialize, Serialize)]
904    pub struct UserKey {
905        // When comparing `UserKey`, we first compare `table_id`, then `table_key`. So the order of
906        // declaration matters.
907        pub table_id: TableId,
908        pub table_key: TableKey,
909    }
910
911    impl UserKey {
912        pub fn decode_length_prefixed(buf: &mut &[u8]) -> Self {
913            let table_id = buf.get_u32();
914            let len = buf.get_u32() as usize;
915            let data = buf[..len].to_vec();
916            buf.advance(len);
917            UserKey {
918                table_id: TableId::new(table_id),
919                table_key: TableKey(data),
920            }
921        }
922
923        pub fn encode_length_prefixed(&self, mut buf: impl BufMut) {
924            buf.put_u32(self.table_id.table_id());
925            buf.put_u32(self.table_key.0.as_slice().len() as u32);
926            buf.put_slice(self.table_key.0.as_slice());
927        }
928    }
929
930    #[derive(Clone, Debug, PartialEq, Eq, Deserialize, Serialize)]
931    pub struct PointRange {
932        // When comparing `PointRange`, we first compare `left_user_key`, then
933        // `is_exclude_left_key`. Therefore the order of declaration matters.
934        pub left_user_key: UserKey,
935        /// `PointRange` represents the left user key itself if `is_exclude_left_key==false`
936        /// while represents the right δ Neighborhood of the left user key if
937        /// `is_exclude_left_key==true`.
938        pub is_exclude_left_key: bool,
939    }
940}
941
942pub trait EmptySliceRef {
943    fn empty_slice_ref<'a>() -> &'a Self;
944}
945
946static EMPTY_BYTES: Bytes = Bytes::new();
947impl EmptySliceRef for Bytes {
948    fn empty_slice_ref<'a>() -> &'a Self {
949        &EMPTY_BYTES
950    }
951}
952
953static EMPTY_VEC: Vec<u8> = Vec::new();
954impl EmptySliceRef for Vec<u8> {
955    fn empty_slice_ref<'a>() -> &'a Self {
956        &EMPTY_VEC
957    }
958}
959
960const EMPTY_SLICE: &[u8] = b"";
961impl EmptySliceRef for &[u8] {
962    fn empty_slice_ref<'b>() -> &'b Self {
963        &EMPTY_SLICE
964    }
965}
966
967/// Bound table key range with table id to generate a new user key range.
968pub fn bound_table_key_range<T: AsRef<[u8]> + EmptySliceRef>(
969    table_id: TableId,
970    table_key_range: &impl RangeBounds<TableKey<T>>,
971) -> (Bound<UserKey<&T>>, Bound<UserKey<&T>>) {
972    let start = match table_key_range.start_bound() {
973        Included(b) => Included(UserKey::new(table_id, TableKey(&b.0))),
974        Excluded(b) => Excluded(UserKey::new(table_id, TableKey(&b.0))),
975        Unbounded => Included(UserKey::new(table_id, TableKey(T::empty_slice_ref()))),
976    };
977
978    let end = match table_key_range.end_bound() {
979        Included(b) => Included(UserKey::new(table_id, TableKey(&b.0))),
980        Excluded(b) => Excluded(UserKey::new(table_id, TableKey(&b.0))),
981        Unbounded => {
982            if let Some(next_table_id) = table_id.table_id().checked_add(1) {
983                Excluded(UserKey::new(
984                    next_table_id.into(),
985                    TableKey(T::empty_slice_ref()),
986                ))
987            } else {
988                Unbounded
989            }
990        }
991    };
992
993    (start, end)
994}
995
996/// TODO: Temporary bypass full key check. Remove this field after #15099 is resolved.
997pub struct FullKeyTracker<T: AsRef<[u8]> + Ord + Eq, const SKIP_DEDUP: bool = false> {
998    pub latest_full_key: FullKey<T>,
999    last_observed_epoch_with_gap: EpochWithGap,
1000}
1001
1002impl<T: AsRef<[u8]> + Ord + Eq, const SKIP_DEDUP: bool> FullKeyTracker<T, SKIP_DEDUP> {
1003    pub fn new(init_full_key: FullKey<T>) -> Self {
1004        let epoch_with_gap = init_full_key.epoch_with_gap;
1005        Self {
1006            latest_full_key: init_full_key,
1007            last_observed_epoch_with_gap: epoch_with_gap,
1008        }
1009    }
1010
1011    /// Check and observe a new full key during iteration
1012    ///
1013    /// # Examples:
1014    /// ```
1015    /// use bytes::Bytes;
1016    /// use risingwave_common::catalog::TableId;
1017    /// use risingwave_common::util::epoch::EPOCH_AVAILABLE_BITS;
1018    /// use risingwave_hummock_sdk::EpochWithGap;
1019    /// use risingwave_hummock_sdk::key::{FullKey, FullKeyTracker, TableKey};
1020    ///
1021    /// let table_id = TableId { table_id: 1 };
1022    /// let full_key1 = FullKey::new(table_id, TableKey(Bytes::from("c")), 5 << EPOCH_AVAILABLE_BITS);
1023    /// let mut a: FullKeyTracker<_> = FullKeyTracker::<Bytes>::new(full_key1.clone());
1024    ///
1025    /// // Panic on non-decreasing epoch observed for the same user key.
1026    /// // let full_key_with_larger_epoch = FullKey::new(table_id, TableKey(Bytes::from("c")), 6 << EPOCH_AVAILABLE_BITS);
1027    /// // a.observe(full_key_with_larger_epoch);
1028    ///
1029    /// // Panic on non-increasing user key observed.
1030    /// // let full_key_with_smaller_user_key = FullKey::new(table_id, TableKey(Bytes::from("b")), 3 << EPOCH_AVAILABLE_BITS);
1031    /// // a.observe(full_key_with_smaller_user_key);
1032    ///
1033    /// let full_key2 = FullKey::new(table_id, TableKey(Bytes::from("c")), 3 << EPOCH_AVAILABLE_BITS);
1034    /// assert_eq!(a.observe(full_key2.clone()), false);
1035    /// assert_eq!(a.latest_user_key(), &full_key2.user_key);
1036    ///
1037    /// let full_key3 = FullKey::new(table_id, TableKey(Bytes::from("f")), 4 << EPOCH_AVAILABLE_BITS);
1038    /// assert_eq!(a.observe(full_key3.clone()), true);
1039    /// assert_eq!(a.latest_user_key(), &full_key3.user_key);
1040    /// ```
1041    ///
1042    /// Return:
1043    /// - If the provided `key` contains a new user key, return true.
1044    /// - Otherwise: return false
1045    pub fn observe<F>(&mut self, key: FullKey<F>) -> bool
1046    where
1047        T: SetSlice<F>,
1048        F: AsRef<[u8]>,
1049    {
1050        self.observe_multi_version(key.user_key, once(key.epoch_with_gap))
1051    }
1052
1053    /// `epochs` comes from greater to smaller
1054    pub fn observe_multi_version<F>(
1055        &mut self,
1056        user_key: UserKey<F>,
1057        mut epochs: impl Iterator<Item = EpochWithGap>,
1058    ) -> bool
1059    where
1060        T: SetSlice<F>,
1061        F: AsRef<[u8]>,
1062    {
1063        let max_epoch_with_gap = epochs.next().expect("non-empty");
1064        let min_epoch_with_gap = epochs.fold(
1065            max_epoch_with_gap,
1066            |prev_epoch_with_gap, curr_epoch_with_gap| {
1067                assert!(
1068                    prev_epoch_with_gap > curr_epoch_with_gap,
1069                    "epoch list not sorted. prev: {:?}, curr: {:?}, user_key: {:?}",
1070                    prev_epoch_with_gap,
1071                    curr_epoch_with_gap,
1072                    user_key
1073                );
1074                curr_epoch_with_gap
1075            },
1076        );
1077        match self
1078            .latest_full_key
1079            .user_key
1080            .as_ref()
1081            .cmp(&user_key.as_ref())
1082        {
1083            Ordering::Less => {
1084                // Observe a new user key
1085
1086                // Reset epochs
1087                self.last_observed_epoch_with_gap = min_epoch_with_gap;
1088
1089                // Take the previous key and set latest key
1090                self.latest_full_key.set(FullKey {
1091                    user_key,
1092                    epoch_with_gap: min_epoch_with_gap,
1093                });
1094                true
1095            }
1096            Ordering::Equal => {
1097                if max_epoch_with_gap > self.last_observed_epoch_with_gap
1098                    || (!SKIP_DEDUP && max_epoch_with_gap == self.last_observed_epoch_with_gap)
1099                {
1100                    // Epoch from the same user key should be monotonically decreasing
1101                    panic!(
1102                        "key {:?} epoch {:?} >= prev epoch {:?}",
1103                        user_key, max_epoch_with_gap, self.last_observed_epoch_with_gap
1104                    );
1105                }
1106                self.last_observed_epoch_with_gap = min_epoch_with_gap;
1107                false
1108            }
1109            Ordering::Greater => {
1110                // User key should be monotonically increasing
1111                panic!(
1112                    "key {:?} <= prev key {:?}",
1113                    user_key,
1114                    FullKey {
1115                        user_key: self.latest_full_key.user_key.as_ref(),
1116                        epoch_with_gap: self.last_observed_epoch_with_gap
1117                    }
1118                );
1119            }
1120        }
1121    }
1122
1123    pub fn latest_user_key(&self) -> &UserKey<T> {
1124        &self.latest_full_key.user_key
1125    }
1126}
1127
1128#[cfg(test)]
1129mod tests {
1130    use risingwave_common::util::epoch::test_epoch;
1131
1132    use super::*;
1133
1134    #[test]
1135    fn test_encode_decode() {
1136        let epoch = test_epoch(1);
1137        let table_key = b"abc".to_vec();
1138        let key = FullKey::for_test(TableId::new(0), &table_key[..], 0);
1139        let buf = key.encode();
1140        assert_eq!(FullKey::decode(&buf), key);
1141        let key = FullKey::for_test(TableId::new(1), &table_key[..], epoch);
1142        let buf = key.encode();
1143        assert_eq!(FullKey::decode(&buf), key);
1144        let mut table_key = vec![1];
1145        let a = FullKey::for_test(TableId::new(1), table_key.clone(), epoch);
1146        table_key[0] = 2;
1147        let b = FullKey::for_test(TableId::new(1), table_key.clone(), epoch);
1148        table_key[0] = 129;
1149        let c = FullKey::for_test(TableId::new(1), table_key, epoch);
1150        assert!(a.lt(&b));
1151        assert!(b.lt(&c));
1152    }
1153
1154    #[test]
1155    fn test_key_cmp() {
1156        let epoch = test_epoch(1);
1157        let epoch2 = test_epoch(2);
1158        // 1 compared with 256 under little-endian encoding would return wrong result.
1159        let key1 = FullKey::for_test(TableId::new(0), b"0".to_vec(), epoch);
1160        let key2 = FullKey::for_test(TableId::new(1), b"0".to_vec(), epoch);
1161        let key3 = FullKey::for_test(TableId::new(1), b"1".to_vec(), epoch2);
1162        let key4 = FullKey::for_test(TableId::new(1), b"1".to_vec(), epoch);
1163
1164        assert_eq!(key1.cmp(&key1), Ordering::Equal);
1165        assert_eq!(key1.cmp(&key2), Ordering::Less);
1166        assert_eq!(key2.cmp(&key3), Ordering::Less);
1167        assert_eq!(key3.cmp(&key4), Ordering::Less);
1168    }
1169
1170    #[test]
1171    fn test_prev_key() {
1172        assert_eq!(prev_key(b"123"), b"122");
1173        assert_eq!(prev_key(b"12\x00"), b"11\xff");
1174        assert_eq!(prev_key(b"\x00\x00"), b"\xff\xff");
1175        assert_eq!(prev_key(b"\x00\x01"), b"\x00\x00");
1176        assert_eq!(prev_key(b"T"), b"S");
1177        assert_eq!(prev_key(b""), b"");
1178    }
1179
1180    #[test]
1181    fn test_bound_table_key_range() {
1182        assert_eq!(
1183            bound_table_key_range(
1184                TableId::default(),
1185                &(
1186                    Included(TableKey(b"a".to_vec())),
1187                    Included(TableKey(b"b".to_vec()))
1188                )
1189            ),
1190            (
1191                Included(UserKey::for_test(TableId::default(), &b"a".to_vec())),
1192                Included(UserKey::for_test(TableId::default(), &b"b".to_vec()),)
1193            )
1194        );
1195        assert_eq!(
1196            bound_table_key_range(
1197                TableId::from(1),
1198                &(Included(TableKey(b"a".to_vec())), Unbounded)
1199            ),
1200            (
1201                Included(UserKey::for_test(TableId::from(1), &b"a".to_vec())),
1202                Excluded(UserKey::for_test(TableId::from(2), &b"".to_vec()),)
1203            )
1204        );
1205        assert_eq!(
1206            bound_table_key_range(
1207                TableId::from(u32::MAX),
1208                &(Included(TableKey(b"a".to_vec())), Unbounded)
1209            ),
1210            (
1211                Included(UserKey::for_test(TableId::from(u32::MAX), &b"a".to_vec())),
1212                Unbounded,
1213            )
1214        );
1215    }
1216
1217    #[test]
1218    fn test_next_full_key() {
1219        let user_key = b"aaa".to_vec();
1220        let epoch: HummockEpoch = 3;
1221        let mut full_key = key_with_epoch(user_key, epoch);
1222        full_key = next_full_key(full_key.as_slice());
1223        assert_eq!(full_key, key_with_epoch(b"aaa".to_vec(), 2));
1224        full_key = next_full_key(full_key.as_slice());
1225        assert_eq!(full_key, key_with_epoch(b"aaa".to_vec(), 1));
1226        full_key = next_full_key(full_key.as_slice());
1227        assert_eq!(full_key, key_with_epoch(b"aaa".to_vec(), 0));
1228        full_key = next_full_key(full_key.as_slice());
1229        assert_eq!(
1230            full_key,
1231            key_with_epoch("aab".as_bytes().to_vec(), HummockEpoch::MAX)
1232        );
1233        assert_eq!(
1234            next_full_key(&key_with_epoch(b"\xff".to_vec(), 0)),
1235            Vec::<u8>::new()
1236        );
1237    }
1238
1239    #[test]
1240    fn test_prev_full_key() {
1241        let user_key = b"aab";
1242        let epoch: HummockEpoch = HummockEpoch::MAX - 3;
1243        let mut full_key = key_with_epoch(user_key.to_vec(), epoch);
1244        full_key = prev_full_key(full_key.as_slice());
1245        assert_eq!(
1246            full_key,
1247            key_with_epoch(b"aab".to_vec(), HummockEpoch::MAX - 2)
1248        );
1249        full_key = prev_full_key(full_key.as_slice());
1250        assert_eq!(
1251            full_key,
1252            key_with_epoch(b"aab".to_vec(), HummockEpoch::MAX - 1)
1253        );
1254        full_key = prev_full_key(full_key.as_slice());
1255        assert_eq!(full_key, key_with_epoch(b"aab".to_vec(), HummockEpoch::MAX));
1256        full_key = prev_full_key(full_key.as_slice());
1257        assert_eq!(full_key, key_with_epoch(b"aaa".to_vec(), 0));
1258
1259        assert_eq!(
1260            prev_full_key(&key_with_epoch(b"\x00".to_vec(), HummockEpoch::MAX)),
1261            Vec::<u8>::new()
1262        );
1263    }
1264
1265    #[test]
1266    fn test_uesr_key_order() {
1267        let a = UserKey::new(TableId::new(1), TableKey(b"aaa".to_vec()));
1268        let b = UserKey::new(TableId::new(2), TableKey(b"aaa".to_vec()));
1269        let c = UserKey::new(TableId::new(2), TableKey(b"bbb".to_vec()));
1270        assert!(a.lt(&b));
1271        assert!(b.lt(&c));
1272        let a = a.encode();
1273        let b = b.encode();
1274        let c = c.encode();
1275        assert!(a.lt(&b));
1276        assert!(b.lt(&c));
1277    }
1278
1279    #[test]
1280    fn test_prefixed_range_with_vnode() {
1281        let concat = |vnode: usize, b: &[u8]| -> Bytes {
1282            prefix_slice_with_vnode(VirtualNode::from_index(vnode), b)
1283        };
1284        assert_eq!(
1285            prefixed_range_with_vnode(
1286                (Included(Bytes::from("1")), Included(Bytes::from("2"))),
1287                VirtualNode::from_index(233),
1288            ),
1289            (
1290                Included(TableKey(concat(233, b"1"))),
1291                Included(TableKey(concat(233, b"2")))
1292            )
1293        );
1294        assert_eq!(
1295            prefixed_range_with_vnode(
1296                (Excluded(Bytes::from("1")), Excluded(Bytes::from("2"))),
1297                VirtualNode::from_index(233),
1298            ),
1299            (
1300                Excluded(TableKey(concat(233, b"1"))),
1301                Excluded(TableKey(concat(233, b"2")))
1302            )
1303        );
1304        assert_eq!(
1305            prefixed_range_with_vnode(
1306                (Bound::<Bytes>::Unbounded, Bound::<Bytes>::Unbounded),
1307                VirtualNode::from_index(233),
1308            ),
1309            (
1310                Included(TableKey(concat(233, b""))),
1311                Excluded(TableKey(concat(234, b"")))
1312            )
1313        );
1314        let max_vnode = VirtualNode::MAX_REPRESENTABLE.to_index();
1315        assert_eq!(
1316            prefixed_range_with_vnode(
1317                (Bound::<Bytes>::Unbounded, Bound::<Bytes>::Unbounded),
1318                VirtualNode::from_index(max_vnode),
1319            ),
1320            (Included(TableKey(concat(max_vnode, b""))), Unbounded)
1321        );
1322        let second_max_vnode = max_vnode - 1;
1323        assert_eq!(
1324            prefixed_range_with_vnode(
1325                (Bound::<Bytes>::Unbounded, Bound::<Bytes>::Unbounded),
1326                VirtualNode::from_index(second_max_vnode),
1327            ),
1328            (
1329                Included(TableKey(concat(second_max_vnode, b""))),
1330                Excluded(TableKey(concat(max_vnode, b"")))
1331            )
1332        );
1333    }
1334
1335    #[test]
1336    fn test_single_vnode_range() {
1337        let left_bound = vec![
1338            Included(b"0".as_slice()),
1339            Excluded(b"0".as_slice()),
1340            Unbounded,
1341        ];
1342        let right_bound = vec![
1343            Included(b"1".as_slice()),
1344            Excluded(b"1".as_slice()),
1345            Unbounded,
1346        ];
1347        for vnode in 0..VirtualNode::MAX_COUNT {
1348            for left in &left_bound {
1349                for right in &right_bound {
1350                    assert_eq!(
1351                        (vnode, vnode + 1),
1352                        vnode_range(&prefixed_range_with_vnode::<&[u8]>(
1353                            (*left, *right),
1354                            VirtualNode::from_index(vnode)
1355                        ))
1356                    )
1357                }
1358            }
1359        }
1360    }
1361}