risingwave_meta/stream/stream_graph/actor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::{BTreeMap, HashMap};
use std::num::NonZeroUsize;
use std::sync::Arc;
use assert_matches::assert_matches;
use itertools::Itertools;
use risingwave_common::bail;
use risingwave_common::bitmap::Bitmap;
use risingwave_common::hash::{ActorId, ActorMapping, IsSingleton, VnodeCount, WorkerSlotId};
use risingwave_common::util::iter_util::ZipEqFast;
use risingwave_common::util::stream_graph_visitor::visit_tables;
use risingwave_meta_model::WorkerId;
use risingwave_pb::meta::table_fragments::Fragment;
use risingwave_pb::plan_common::ExprContext;
use risingwave_pb::stream_plan::stream_node::NodeBody;
use risingwave_pb::stream_plan::update_mutation::MergeUpdate;
use risingwave_pb::stream_plan::{
DispatchStrategy, Dispatcher, DispatcherType, MergeNode, StreamActor, StreamNode,
StreamScanType,
};
use super::id::GlobalFragmentIdsExt;
use super::Locations;
use crate::controller::cluster::StreamingClusterInfo;
use crate::manager::{MetaSrvEnv, StreamingJob};
use crate::model::{DispatcherId, FragmentId};
use crate::stream::stream_graph::fragment::{
CompleteStreamFragmentGraph, EdgeId, EitherFragment, StreamFragmentEdge,
};
use crate::stream::stream_graph::id::{GlobalActorId, GlobalActorIdGen, GlobalFragmentId};
use crate::stream::stream_graph::schedule;
use crate::stream::stream_graph::schedule::Distribution;
use crate::MetaResult;
/// The upstream information of an actor during the building process. This will eventually be used
/// to create the `MergeNode`s as the leaf executor of each actor.
#[derive(Debug, Clone)]
struct ActorUpstream {
/// The ID of this edge.
edge_id: EdgeId,
/// Upstream actors.
actors: Vec<GlobalActorId>,
/// The fragment ID of this upstream.
fragment_id: GlobalFragmentId,
}
/// [`ActorBuilder`] builds a stream actor in a stream DAG.
#[derive(Debug)]
struct ActorBuilder {
/// The ID of this actor.
actor_id: GlobalActorId,
/// The fragment ID of this actor.
fragment_id: GlobalFragmentId,
/// The body of this actor, verbatim from the frontend.
///
/// This cannot be directly used for execution, and it will be rewritten after we know all of
/// the upstreams and downstreams in the end. See `rewrite`.
nodes: Arc<StreamNode>,
/// The dispatchers to the downstream actors.
downstreams: HashMap<DispatcherId, Dispatcher>,
/// The upstream actors.
upstreams: HashMap<EdgeId, ActorUpstream>,
/// The virtual node bitmap, if this fragment is hash distributed.
vnode_bitmap: Option<Bitmap>,
}
impl ActorBuilder {
fn new(
actor_id: GlobalActorId,
fragment_id: GlobalFragmentId,
vnode_bitmap: Option<Bitmap>,
node: Arc<StreamNode>,
) -> Self {
Self {
actor_id,
fragment_id,
nodes: node,
downstreams: HashMap::new(),
upstreams: HashMap::new(),
vnode_bitmap,
}
}
fn fragment_id(&self) -> GlobalFragmentId {
self.fragment_id
}
/// Add a dispatcher to this actor.
fn add_dispatcher(&mut self, dispatcher: Dispatcher) {
self.downstreams
.try_insert(dispatcher.dispatcher_id, dispatcher)
.unwrap();
}
/// Add an upstream to this actor.
fn add_upstream(&mut self, upstream: ActorUpstream) {
self.upstreams
.try_insert(upstream.edge_id, upstream)
.unwrap();
}
/// Rewrite the actor body.
///
/// During this process, the following things will be done:
/// 1. Replace the logical `Exchange` in node's input with `Merge`, which can be executed on the
/// compute nodes.
/// 2. Fill the upstream mview info of the `Merge` node under the other "leaf" nodes.
fn rewrite(&self) -> MetaResult<StreamNode> {
self.rewrite_inner(&self.nodes, 0)
}
fn rewrite_inner(&self, stream_node: &StreamNode, depth: usize) -> MetaResult<StreamNode> {
match stream_node.get_node_body()? {
// Leaf node `Exchange`.
NodeBody::Exchange(exchange) => {
// The exchange node should always be the bottom of the plan node. If we find one
// when the depth is 0, it means that the plan node is not well-formed.
if depth == 0 {
bail!(
"there should be no ExchangeNode on the top of the plan node: {:#?}",
stream_node
)
}
assert!(!stream_node.get_fields().is_empty());
assert!(stream_node.input.is_empty());
// Index the upstreams by the an internal edge ID.
let upstreams = &self.upstreams[&EdgeId::Internal {
link_id: stream_node.get_operator_id(),
}];
Ok(StreamNode {
node_body: Some(NodeBody::Merge(MergeNode {
upstream_actor_id: upstreams.actors.as_global_ids(),
upstream_fragment_id: upstreams.fragment_id.as_global_id(),
upstream_dispatcher_type: exchange.get_strategy()?.r#type,
fields: stream_node.get_fields().clone(),
})),
identity: "MergeExecutor".to_string(),
..stream_node.clone()
})
}
// "Leaf" node `StreamScan`.
NodeBody::StreamScan(stream_scan) => {
let input = stream_node.get_input();
assert_eq!(input.len(), 2);
let merge_node = &input[0];
assert_matches!(merge_node.node_body, Some(NodeBody::Merge(_)));
let batch_plan_node = &input[1];
assert_matches!(batch_plan_node.node_body, Some(NodeBody::BatchPlan(_)));
// Index the upstreams by the an external edge ID.
let upstreams = &self.upstreams[&EdgeId::UpstreamExternal {
upstream_table_id: stream_scan.table_id.into(),
downstream_fragment_id: self.fragment_id,
}];
let upstream_actor_id = upstreams.actors.as_global_ids();
let is_shuffled_backfill = stream_scan.stream_scan_type
== StreamScanType::ArrangementBackfill as i32
|| stream_scan.stream_scan_type == StreamScanType::SnapshotBackfill as i32;
if !is_shuffled_backfill {
assert_eq!(upstream_actor_id.len(), 1);
}
let upstream_dispatcher_type = if is_shuffled_backfill {
// FIXME(kwannoel): Should the upstream dispatcher type depends on the upstream distribution?
// If singleton, use `Simple` dispatcher, otherwise use `Hash` dispatcher.
DispatcherType::Hash as _
} else {
DispatcherType::NoShuffle as _
};
let input = vec![
// Fill the merge node body with correct upstream info.
StreamNode {
node_body: Some(NodeBody::Merge(MergeNode {
upstream_actor_id,
upstream_fragment_id: upstreams.fragment_id.as_global_id(),
upstream_dispatcher_type,
fields: merge_node.fields.clone(),
})),
..merge_node.clone()
},
batch_plan_node.clone(),
];
Ok(StreamNode {
input,
..stream_node.clone()
})
}
// "Leaf" node `CdcFilter` and `SourceBackfill`. They both `Merge` an upstream `Source`
// cdc_filter -> backfill -> mview
// source_backfill -> mview
NodeBody::CdcFilter(_) | NodeBody::SourceBackfill(_) => {
let input = stream_node.get_input();
assert_eq!(input.len(), 1);
let merge_node = &input[0];
assert_matches!(merge_node.node_body, Some(NodeBody::Merge(_)));
let upstream_source_id = match stream_node.get_node_body()? {
NodeBody::CdcFilter(node) => node.upstream_source_id,
NodeBody::SourceBackfill(node) => node.upstream_source_id,
_ => unreachable!(),
};
// Index the upstreams by the an external edge ID.
let upstreams = &self.upstreams[&EdgeId::UpstreamExternal {
upstream_table_id: upstream_source_id.into(),
downstream_fragment_id: self.fragment_id,
}];
let upstream_actor_id = upstreams.actors.as_global_ids();
// Upstream Cdc Source should be singleton.
// SourceBackfill is NoShuffle 1-1 correspondence.
// So they both should have only one upstream actor.
assert_eq!(upstream_actor_id.len(), 1);
// rewrite the input
let input = vec![
// Fill the merge node body with correct upstream info.
StreamNode {
node_body: Some(NodeBody::Merge(MergeNode {
upstream_actor_id,
upstream_fragment_id: upstreams.fragment_id.as_global_id(),
upstream_dispatcher_type: DispatcherType::NoShuffle as _,
fields: merge_node.fields.clone(),
})),
..merge_node.clone()
},
];
Ok(StreamNode {
input,
..stream_node.clone()
})
}
// For other nodes, visit the children recursively.
_ => {
let mut new_stream_node = stream_node.clone();
for (input, new_input) in stream_node
.input
.iter()
.zip_eq_fast(&mut new_stream_node.input)
{
*new_input = self.rewrite_inner(input, depth + 1)?;
}
Ok(new_stream_node)
}
}
}
/// Build an actor after all the upstreams and downstreams are processed.
fn build(self, job: &StreamingJob, expr_context: ExprContext) -> MetaResult<StreamActor> {
let rewritten_nodes = self.rewrite()?;
// TODO: store each upstream separately
let upstream_actor_id = self
.upstreams
.into_values()
.flat_map(|ActorUpstream { actors, .. }| actors.as_global_ids())
.collect();
// Only fill the definition when debug assertions enabled, otherwise use name instead.
#[cfg(not(debug_assertions))]
let mview_definition = job.name();
#[cfg(debug_assertions)]
let mview_definition = job.definition();
Ok(StreamActor {
actor_id: self.actor_id.as_global_id(),
fragment_id: self.fragment_id.as_global_id(),
nodes: Some(rewritten_nodes),
dispatcher: self.downstreams.into_values().collect(),
upstream_actor_id,
vnode_bitmap: self.vnode_bitmap.map(|b| b.to_protobuf()),
mview_definition,
expr_context: Some(expr_context),
})
}
}
/// The required changes to an existing external actor to build the graph of a streaming job.
///
/// For example, when we're creating an mview on an existing mview, we need to add new downstreams
/// to the upstream actors, by adding new dispatchers.
#[derive(Default)]
struct ExternalChange {
/// The new downstreams to be added, indexed by the dispatcher ID.
new_downstreams: HashMap<DispatcherId, Dispatcher>,
/// The new upstreams to be added (replaced), indexed by the upstream fragment ID.
new_upstreams: HashMap<GlobalFragmentId, ActorUpstream>,
}
impl ExternalChange {
/// Add a dispatcher to the external actor.
fn add_dispatcher(&mut self, dispatcher: Dispatcher) {
self.new_downstreams
.try_insert(dispatcher.dispatcher_id, dispatcher)
.unwrap();
}
/// Add an upstream to the external actor.
fn add_upstream(&mut self, upstream: ActorUpstream) {
self.new_upstreams
.try_insert(upstream.fragment_id, upstream)
.unwrap();
}
}
/// The worker slot location of actors.
type ActorLocations = BTreeMap<GlobalActorId, WorkerSlotId>;
/// The actual mutable state of building an actor graph.
///
/// When the fragments are visited in a topological order, actor builders will be added to this
/// state and the scheduled locations will be added. As the building process is run on the
/// **complete graph** which also contains the info of the existing (external) fragments, the info
/// of them will be also recorded.
#[derive(Default)]
struct ActorGraphBuildStateInner {
/// The builders of the actors to be built.
actor_builders: BTreeMap<GlobalActorId, ActorBuilder>,
/// The scheduled locations of the actors to be built.
building_locations: ActorLocations,
/// The required changes to the external actors. See [`ExternalChange`].
external_changes: BTreeMap<GlobalActorId, ExternalChange>,
/// The actual locations of the external actors.
external_locations: ActorLocations,
}
/// The information of a fragment, used for parameter passing for `Inner::add_link`.
struct FragmentLinkNode<'a> {
fragment_id: GlobalFragmentId,
actor_ids: &'a [GlobalActorId],
distribution: &'a Distribution,
}
impl ActorGraphBuildStateInner {
/// Insert new generated actor and record its location.
///
/// The `vnode_bitmap` should be `Some` for the actors of hash-distributed fragments.
fn add_actor(
&mut self,
actor_id: GlobalActorId,
fragment_id: GlobalFragmentId,
worker_slot_id: WorkerSlotId,
vnode_bitmap: Option<Bitmap>,
node: Arc<StreamNode>,
) {
self.actor_builders
.try_insert(
actor_id,
ActorBuilder::new(actor_id, fragment_id, vnode_bitmap, node),
)
.unwrap();
self.building_locations
.try_insert(actor_id, worker_slot_id)
.unwrap();
}
/// Record the location of an external actor.
fn record_external_location(&mut self, actor_id: GlobalActorId, worker_slot_id: WorkerSlotId) {
self.external_locations
.try_insert(actor_id, worker_slot_id)
.unwrap();
}
/// Create a new hash dispatcher.
fn new_hash_dispatcher(
strategy: &DispatchStrategy,
downstream_fragment_id: GlobalFragmentId,
downstream_actors: &[GlobalActorId],
downstream_actor_mapping: ActorMapping,
) -> Dispatcher {
assert_eq!(strategy.r#type(), DispatcherType::Hash);
Dispatcher {
r#type: DispatcherType::Hash as _,
dist_key_indices: strategy.dist_key_indices.clone(),
output_indices: strategy.output_indices.clone(),
hash_mapping: Some(downstream_actor_mapping.to_protobuf()),
dispatcher_id: downstream_fragment_id.as_global_id() as u64,
downstream_actor_id: downstream_actors.as_global_ids(),
}
}
/// Create a new dispatcher for non-hash types.
fn new_normal_dispatcher(
strategy: &DispatchStrategy,
downstream_fragment_id: GlobalFragmentId,
downstream_actors: &[GlobalActorId],
) -> Dispatcher {
assert_ne!(strategy.r#type(), DispatcherType::Hash);
assert!(strategy.dist_key_indices.is_empty());
Dispatcher {
r#type: strategy.r#type,
dist_key_indices: vec![],
output_indices: strategy.output_indices.clone(),
hash_mapping: None,
dispatcher_id: downstream_fragment_id.as_global_id() as u64,
downstream_actor_id: downstream_actors.as_global_ids(),
}
}
/// Add the new dispatcher for an actor.
///
/// - If the actor is to be built, the dispatcher will be added to the actor builder.
/// - If the actor is an external actor, the dispatcher will be added to the external changes.
fn add_dispatcher(&mut self, actor_id: GlobalActorId, dispatcher: Dispatcher) {
if let Some(actor_builder) = self.actor_builders.get_mut(&actor_id) {
actor_builder.add_dispatcher(dispatcher);
} else {
self.external_changes
.entry(actor_id)
.or_default()
.add_dispatcher(dispatcher);
}
}
/// Add the new upstream for an actor.
///
/// - If the actor is to be built, the upstream will be added to the actor builder.
/// - If the actor is an external actor, the upstream will be added to the external changes.
fn add_upstream(&mut self, actor_id: GlobalActorId, upstream: ActorUpstream) {
if let Some(actor_builder) = self.actor_builders.get_mut(&actor_id) {
actor_builder.add_upstream(upstream);
} else {
self.external_changes
.entry(actor_id)
.or_default()
.add_upstream(upstream);
}
}
/// Get the location of an actor. Will look up the location map of both the actors to be built
/// and the external actors.
fn get_location(&self, actor_id: GlobalActorId) -> WorkerSlotId {
self.building_locations
.get(&actor_id)
.copied()
.or_else(|| self.external_locations.get(&actor_id).copied())
.unwrap()
}
/// Add a "link" between two fragments in the graph.
///
/// The `edge` will be expanded into multiple (downstream - upstream) pairs for the actors in
/// the two fragments, based on the distribution and the dispatch strategy. They will be
/// finally transformed to `Dispatcher` and `Merge` nodes when building the actors.
///
/// If there're existing (external) fragments, the info will be recorded in `external_changes`,
/// instead of the actor builders.
fn add_link<'a>(
&mut self,
upstream: FragmentLinkNode<'a>,
downstream: FragmentLinkNode<'a>,
edge: &'a StreamFragmentEdge,
) {
let dt = edge.dispatch_strategy.r#type();
match dt {
// For `NoShuffle`, make n "1-1" links between the actors.
DispatcherType::NoShuffle => {
assert_eq!(upstream.actor_ids.len(), downstream.actor_ids.len());
let upstream_locations: HashMap<_, _> = upstream
.actor_ids
.iter()
.map(|id| (self.get_location(*id), *id))
.collect();
let downstream_locations: HashMap<_, _> = downstream
.actor_ids
.iter()
.map(|id| (self.get_location(*id), *id))
.collect();
for (location, upstream_id) in upstream_locations {
let downstream_id = downstream_locations.get(&location).unwrap();
// Create a new dispatcher just between these two actors.
self.add_dispatcher(
upstream_id,
Self::new_normal_dispatcher(
&edge.dispatch_strategy,
downstream.fragment_id,
&[*downstream_id],
),
);
// Also record the upstream for the downstream actor.
self.add_upstream(
*downstream_id,
ActorUpstream {
edge_id: edge.id,
actors: vec![upstream_id],
fragment_id: upstream.fragment_id,
},
);
}
}
// Otherwise, make m * n links between the actors.
DispatcherType::Hash | DispatcherType::Broadcast | DispatcherType::Simple => {
// Add dispatchers for the upstream actors.
let dispatcher = if let DispatcherType::Hash = dt {
// Transform the `WorkerSlotMapping` from the downstream distribution to the
// `ActorMapping`, used for the `HashDispatcher` for the upstream actors.
let downstream_locations: HashMap<WorkerSlotId, ActorId> = downstream
.actor_ids
.iter()
.map(|&actor_id| (self.get_location(actor_id), actor_id.as_global_id()))
.collect();
let actor_mapping = downstream
.distribution
.as_hash()
.unwrap()
.to_actor(&downstream_locations);
Self::new_hash_dispatcher(
&edge.dispatch_strategy,
downstream.fragment_id,
downstream.actor_ids,
actor_mapping,
)
} else {
Self::new_normal_dispatcher(
&edge.dispatch_strategy,
downstream.fragment_id,
downstream.actor_ids,
)
};
for upstream_id in upstream.actor_ids {
self.add_dispatcher(*upstream_id, dispatcher.clone());
}
// Add upstreams for the downstream actors.
let actor_upstream = ActorUpstream {
edge_id: edge.id,
actors: upstream.actor_ids.to_vec(),
fragment_id: upstream.fragment_id,
};
for downstream_id in downstream.actor_ids {
self.add_upstream(*downstream_id, actor_upstream.clone());
}
}
DispatcherType::Unspecified => unreachable!(),
}
}
}
/// The mutable state of building an actor graph. See [`ActorGraphBuildStateInner`].
struct ActorGraphBuildState {
/// The actual state.
inner: ActorGraphBuildStateInner,
/// The actor IDs of each fragment.
fragment_actors: HashMap<GlobalFragmentId, Vec<GlobalActorId>>,
/// The next local actor id to use.
next_local_id: u32,
/// The global actor id generator.
actor_id_gen: GlobalActorIdGen,
}
impl ActorGraphBuildState {
/// Create an empty state with the given id generator.
fn new(actor_id_gen: GlobalActorIdGen) -> Self {
Self {
inner: Default::default(),
fragment_actors: Default::default(),
next_local_id: 0,
actor_id_gen,
}
}
/// Get the next global actor id.
fn next_actor_id(&mut self) -> GlobalActorId {
let local_id = self.next_local_id;
self.next_local_id += 1;
self.actor_id_gen.to_global_id(local_id)
}
/// Finish the build and return the inner state.
fn finish(self) -> ActorGraphBuildStateInner {
// Assert that all the actors are built.
assert_eq!(self.actor_id_gen.len(), self.next_local_id);
self.inner
}
}
/// The result of a built actor graph. Will be further embedded into the `Context` for building
/// actors on the compute nodes.
pub struct ActorGraphBuildResult {
/// The graph of sealed fragments, including all actors.
pub graph: BTreeMap<FragmentId, Fragment>,
/// The scheduled locations of the actors to be built.
pub building_locations: Locations,
/// The actual locations of the external actors.
pub existing_locations: Locations,
/// The new dispatchers to be added to the upstream mview actors. Used for MV on MV.
pub dispatchers: HashMap<ActorId, Vec<Dispatcher>>,
/// The updates to be applied to the downstream chain actors. Used for schema change (replace
/// table plan).
pub merge_updates: Vec<MergeUpdate>,
}
/// [`ActorGraphBuilder`] builds the actor graph for the given complete fragment graph, based on the
/// current cluster info and the required parallelism.
pub struct ActorGraphBuilder {
/// The pre-scheduled distribution for each building fragment.
distributions: HashMap<GlobalFragmentId, Distribution>,
/// The actual distribution for each existing fragment.
existing_distributions: HashMap<GlobalFragmentId, Distribution>,
/// The complete fragment graph.
fragment_graph: CompleteStreamFragmentGraph,
/// The cluster info for creating a streaming job.
cluster_info: StreamingClusterInfo,
}
impl ActorGraphBuilder {
/// Create a new actor graph builder with the given "complete" graph. Returns an error if the
/// graph is failed to be scheduled.
pub fn new(
streaming_job_id: u32,
fragment_graph: CompleteStreamFragmentGraph,
cluster_info: StreamingClusterInfo,
default_parallelism: NonZeroUsize,
) -> MetaResult<Self> {
let expected_vnode_count = fragment_graph.max_parallelism();
let existing_distributions = fragment_graph.existing_distribution();
// Schedule the distribution of all building fragments.
let scheduler = schedule::Scheduler::new(
streaming_job_id,
&cluster_info.worker_nodes,
default_parallelism,
expected_vnode_count,
)?;
let distributions = scheduler.schedule(&fragment_graph)?;
// Fill the vnode count for each internal table, based on schedule result.
let mut fragment_graph = fragment_graph;
for (id, fragment) in fragment_graph.building_fragments_mut() {
let fragment_vnode_count = distributions[id].vnode_count();
visit_tables(fragment, |table, _| {
// There are special cases where a hash-distributed fragment contains singleton
// internal tables, e.g., the state table of `Source` executors.
let vnode_count = if table.is_singleton() {
if fragment_vnode_count > 1 {
tracing::info!(
table.name,
"found singleton table in hash-distributed fragment"
);
}
1
} else {
fragment_vnode_count
};
table.maybe_vnode_count = VnodeCount::set(vnode_count).to_protobuf();
})
}
Ok(Self {
distributions,
existing_distributions,
fragment_graph,
cluster_info,
})
}
/// Get the distribution of the given fragment. Will look up the distribution map of both the
/// building and existing fragments.
fn get_distribution(&self, fragment_id: GlobalFragmentId) -> &Distribution {
self.distributions
.get(&fragment_id)
.or_else(|| self.existing_distributions.get(&fragment_id))
.unwrap()
}
/// Convert the actor location map to the [`Locations`] struct.
fn build_locations(&self, actor_locations: ActorLocations) -> Locations {
let actor_locations = actor_locations
.into_iter()
.map(|(id, worker_slot_id)| (id.as_global_id(), worker_slot_id))
.collect();
let worker_locations = self
.cluster_info
.worker_nodes
.iter()
.map(|(id, node)| (*id as WorkerId, node.clone()))
.collect();
Locations {
actor_locations,
worker_locations,
}
}
/// Build a stream graph by duplicating each fragment as parallel actors. Returns
/// [`ActorGraphBuildResult`] that will be further used to build actors on the compute nodes.
pub fn generate_graph(
self,
env: &MetaSrvEnv,
job: &StreamingJob,
expr_context: ExprContext,
) -> MetaResult<ActorGraphBuildResult> {
// Pre-generate IDs for all actors.
let actor_len = self
.distributions
.values()
.map(|d| d.parallelism())
.sum::<usize>() as u64;
let id_gen = GlobalActorIdGen::new(env.id_gen_manager(), actor_len);
// Build the actor graph and get the final state.
let ActorGraphBuildStateInner {
actor_builders,
building_locations,
external_changes,
external_locations,
} = self.build_actor_graph(id_gen)?;
for worker_slot_id in external_locations.values() {
if self
.cluster_info
.unschedulable_workers
.contains(&worker_slot_id.worker_id())
{
bail!(
"The worker {} where the associated upstream is located is unschedulable",
worker_slot_id.worker_id(),
);
}
}
// Serialize the graph into a map of sealed fragments.
let graph = {
let mut actors: HashMap<GlobalFragmentId, Vec<StreamActor>> = HashMap::new();
// As all fragments are processed, we can now `build` the actors where the `Exchange`
// and `Chain` are rewritten.
for builder in actor_builders.into_values() {
let fragment_id = builder.fragment_id();
let actor = builder.build(job, expr_context.clone())?;
actors.entry(fragment_id).or_default().push(actor);
}
actors
.into_iter()
.map(|(fragment_id, actors)| {
let distribution = self.distributions[&fragment_id].clone();
let fragment =
self.fragment_graph
.seal_fragment(fragment_id, actors, distribution);
let fragment_id = fragment_id.as_global_id();
(fragment_id, fragment)
})
.collect()
};
// Convert the actor location map to the `Locations` struct.
let building_locations = self.build_locations(building_locations);
let existing_locations = self.build_locations(external_locations);
// Extract the new dispatchers from the external changes.
let dispatchers = external_changes
.iter()
.map(|(actor_id, change)| {
(
actor_id.as_global_id(),
change.new_downstreams.values().cloned().collect_vec(),
)
})
.filter(|(_, v)| !v.is_empty())
.collect();
// Extract the updates for merge executors from the external changes.
let merge_updates = external_changes
.iter()
.flat_map(|(actor_id, change)| {
change.new_upstreams.values().map(move |upstream| {
let EdgeId::DownstreamExternal {
original_upstream_fragment_id,
..
} = upstream.edge_id
else {
unreachable!("edge from internal to external must be `DownstreamExternal`")
};
MergeUpdate {
actor_id: actor_id.as_global_id(),
upstream_fragment_id: original_upstream_fragment_id.as_global_id(),
new_upstream_fragment_id: Some(upstream.fragment_id.as_global_id()),
added_upstream_actor_id: upstream.actors.as_global_ids(),
removed_upstream_actor_id: vec![],
}
})
})
.collect();
Ok(ActorGraphBuildResult {
graph,
building_locations,
existing_locations,
dispatchers,
merge_updates,
})
}
/// Build actor graph for each fragment, using topological order.
fn build_actor_graph(&self, id_gen: GlobalActorIdGen) -> MetaResult<ActorGraphBuildStateInner> {
let mut state = ActorGraphBuildState::new(id_gen);
// Use topological sort to build the graph from downstream to upstream. (The first fragment
// popped out from the heap will be the top-most node in plan, or the sink in stream graph.)
for fragment_id in self.fragment_graph.topo_order()? {
self.build_actor_graph_fragment(fragment_id, &mut state)?;
}
Ok(state.finish())
}
/// Build actor graph for a specific fragment.
fn build_actor_graph_fragment(
&self,
fragment_id: GlobalFragmentId,
state: &mut ActorGraphBuildState,
) -> MetaResult<()> {
let current_fragment = self.fragment_graph.get_fragment(fragment_id);
let distribution = self.get_distribution(fragment_id);
// First, add or record the actors for the current fragment into the state.
let actor_ids = match current_fragment {
// For building fragments, we need to generate the actor builders.
EitherFragment::Building(current_fragment) => {
let node = Arc::new(current_fragment.node.clone().unwrap());
let bitmaps = distribution.as_hash().map(|m| m.to_bitmaps());
distribution
.worker_slots()
.map(|worker_slot| {
let actor_id = state.next_actor_id();
let vnode_bitmap = bitmaps
.as_ref()
.map(|m: &HashMap<WorkerSlotId, Bitmap>| &m[&worker_slot])
.cloned();
state.inner.add_actor(
actor_id,
fragment_id,
worker_slot,
vnode_bitmap,
node.clone(),
);
actor_id
})
.collect_vec()
}
// For existing fragments, we only need to record the actor locations.
EitherFragment::Existing(existing_fragment) => existing_fragment
.actors
.iter()
.map(|a| {
let actor_id = GlobalActorId::new(a.actor_id);
let worker_slot_id = match &distribution {
Distribution::Singleton(worker_slot_id) => *worker_slot_id,
Distribution::Hash(mapping) => mapping
.get_matched(&Bitmap::from(a.get_vnode_bitmap().unwrap()))
.unwrap(),
};
state
.inner
.record_external_location(actor_id, worker_slot_id);
actor_id
})
.collect_vec(),
};
// Then, add links between the current fragment and its downstream fragments.
for (downstream_fragment_id, edge) in self.fragment_graph.get_downstreams(fragment_id) {
let downstream_actors = state
.fragment_actors
.get(&downstream_fragment_id)
.expect("downstream fragment not processed yet");
let downstream_distribution = self.get_distribution(downstream_fragment_id);
state.inner.add_link(
FragmentLinkNode {
fragment_id,
actor_ids: &actor_ids,
distribution,
},
FragmentLinkNode {
fragment_id: downstream_fragment_id,
actor_ids: downstream_actors,
distribution: downstream_distribution,
},
edge,
);
}
// Finally, record the actor IDs for the current fragment.
state
.fragment_actors
.try_insert(fragment_id, actor_ids)
.unwrap_or_else(|_| panic!("fragment {:?} is already processed", fragment_id));
Ok(())
}
}