risingwave_stream/executor/backfill/arrangement_backfill.rs
1// Copyright 2025 RisingWave Labs
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15use std::collections::HashMap;
16
17use either::Either;
18use futures::stream::{select_all, select_with_strategy};
19use futures::{TryStreamExt, stream};
20use itertools::Itertools;
21use risingwave_common::array::{DataChunk, Op};
22use risingwave_common::bail;
23use risingwave_common::hash::{VirtualNode, VnodeBitmapExt};
24use risingwave_common::util::chunk_coalesce::DataChunkBuilder;
25use risingwave_common_rate_limit::{MonitoredRateLimiter, RateLimit, RateLimiter};
26use risingwave_storage::row_serde::value_serde::ValueRowSerde;
27use risingwave_storage::store::PrefetchOptions;
28
29use crate::common::table::state_table::ReplicatedStateTable;
30#[cfg(debug_assertions)]
31use crate::executor::backfill::utils::METADATA_STATE_LEN;
32use crate::executor::backfill::utils::{
33 BackfillProgressPerVnode, BackfillState, compute_bounds, create_builder,
34 get_progress_per_vnode, mapping_chunk, mapping_message, mark_chunk_ref_by_vnode,
35 persist_state_per_vnode, update_pos_by_vnode,
36};
37use crate::executor::prelude::*;
38use crate::task::{CreateMviewProgressReporter, FragmentId};
39
40type Builders = HashMap<VirtualNode, DataChunkBuilder>;
41
42/// Similar to [`super::no_shuffle_backfill::BackfillExecutor`].
43/// Main differences:
44/// - [`ArrangementBackfillExecutor`] can reside on a different CN, so it can be scaled
45/// independently.
46/// - To synchronize upstream shared buffer, it is initialized with a [`ReplicatedStateTable`].
47pub struct ArrangementBackfillExecutor<S: StateStore, SD: ValueRowSerde> {
48 /// Upstream table
49 upstream_table: ReplicatedStateTable<S, SD>,
50
51 /// Upstream with the same schema with the upstream table.
52 upstream: Executor,
53
54 /// Internal state table for persisting state of backfill state.
55 state_table: StateTable<S>,
56
57 /// The column indices need to be forwarded to the downstream from the upstream and table scan.
58 output_indices: Vec<usize>,
59
60 progress: CreateMviewProgressReporter,
61
62 actor_id: ActorId,
63
64 metrics: Arc<StreamingMetrics>,
65
66 chunk_size: usize,
67
68 rate_limiter: MonitoredRateLimiter,
69
70 /// Fragment id of the fragment this backfill node belongs to.
71 fragment_id: FragmentId,
72}
73
74impl<S, SD> ArrangementBackfillExecutor<S, SD>
75where
76 S: StateStore,
77 SD: ValueRowSerde,
78{
79 #[allow(clippy::too_many_arguments)]
80 #[allow(dead_code)]
81 pub fn new(
82 upstream_table: ReplicatedStateTable<S, SD>,
83 upstream: Executor,
84 state_table: StateTable<S>,
85 output_indices: Vec<usize>,
86 progress: CreateMviewProgressReporter,
87 metrics: Arc<StreamingMetrics>,
88 chunk_size: usize,
89 rate_limit: RateLimit,
90 fragment_id: FragmentId,
91 ) -> Self {
92 let rate_limiter = RateLimiter::new(rate_limit).monitored(upstream_table.table_id());
93 Self {
94 upstream_table,
95 upstream,
96 state_table,
97 output_indices,
98 actor_id: progress.actor_id(),
99 progress,
100 metrics,
101 chunk_size,
102 rate_limiter,
103 fragment_id,
104 }
105 }
106
107 #[try_stream(ok = Message, error = StreamExecutorError)]
108 async fn execute_inner(mut self) {
109 tracing::debug!("backfill executor started");
110 // The primary key columns, in the output columns of the upstream_table scan.
111 // Table scan scans a subset of the columns of the upstream table.
112 let pk_in_output_indices = self.upstream_table.pk_in_output_indices().unwrap();
113 #[cfg(debug_assertions)]
114 let state_len = self.upstream_table.pk_indices().len() + METADATA_STATE_LEN;
115 let pk_order = self.upstream_table.pk_serde().get_order_types().to_vec();
116 let upstream_table_id = self.upstream_table.table_id();
117 let mut upstream_table = self.upstream_table;
118 let vnodes = upstream_table.vnodes().clone();
119
120 // These builders will build data chunks.
121 // We must supply them with the full datatypes which correspond to
122 // pk + output_indices.
123 let snapshot_data_types = self
124 .upstream
125 .schema()
126 .fields()
127 .iter()
128 .map(|field| field.data_type.clone())
129 .collect_vec();
130 let mut builders: Builders = upstream_table
131 .vnodes()
132 .iter_vnodes()
133 .map(|vnode| {
134 let builder = create_builder(
135 self.rate_limiter.rate_limit(),
136 self.chunk_size,
137 snapshot_data_types.clone(),
138 );
139 (vnode, builder)
140 })
141 .collect();
142
143 let mut upstream = self.upstream.execute();
144
145 // Poll the upstream to get the first barrier.
146 let first_barrier = expect_first_barrier(&mut upstream).await?;
147 let mut global_pause = first_barrier.is_pause_on_startup();
148 let mut backfill_paused = first_barrier.is_backfill_pause_on_startup(self.fragment_id);
149 let first_epoch = first_barrier.epoch;
150 let is_newly_added = first_barrier.is_newly_added(self.actor_id);
151 // The first barrier message should be propagated.
152 yield Message::Barrier(first_barrier);
153
154 self.state_table.init_epoch(first_epoch).await?;
155
156 let progress_per_vnode = get_progress_per_vnode(&self.state_table).await?;
157
158 let is_completely_finished = progress_per_vnode.iter().all(|(_, p)| {
159 matches!(
160 p.current_state(),
161 &BackfillProgressPerVnode::Completed { .. }
162 )
163 });
164 if is_completely_finished {
165 assert!(!is_newly_added);
166 }
167
168 upstream_table.init_epoch(first_epoch).await?;
169
170 let mut backfill_state: BackfillState = progress_per_vnode.into();
171
172 let to_backfill = !is_completely_finished;
173
174 // If no need backfill, but state was still "unfinished" we need to finish it.
175 // So we just update the state + progress to meta at the next barrier to finish progress,
176 // and forward other messages.
177 //
178 // Reason for persisting on second barrier rather than first:
179 // We can't update meta with progress as finished until state_table
180 // has been updated.
181 // We also can't update state_table in first epoch, since state_table
182 // expects to have been initialized in previous epoch.
183
184 // The epoch used to snapshot read upstream mv.
185 let mut snapshot_read_epoch;
186
187 // Keep track of rows from the snapshot.
188 let mut total_snapshot_processed_rows: u64 = backfill_state.get_snapshot_row_count();
189
190 // Arrangement Backfill Algorithm:
191 //
192 // backfill_stream
193 // / \
194 // upstream snapshot
195 //
196 // We construct a backfill stream with upstream as its left input and mv snapshot read
197 // stream as its right input. When a chunk comes from upstream, we will buffer it.
198 //
199 // When a barrier comes from upstream:
200 // Immediately break out of backfill loop.
201 // - For each row of the upstream chunk buffer, compute vnode.
202 // - Get the `current_pos` corresponding to the vnode. Forward it to downstream if its pk
203 // <= `current_pos`, otherwise ignore it.
204 // - Flush all buffered upstream_chunks to replicated state table.
205 // - Update the `snapshot_read_epoch`.
206 // - Reconstruct the whole backfill stream with upstream and new mv snapshot read stream
207 // with the `snapshot_read_epoch`.
208 //
209 // When a chunk comes from snapshot, we forward it to the downstream and raise
210 // `current_pos`.
211 //
212 // When we reach the end of the snapshot read stream, it means backfill has been
213 // finished.
214 //
215 // Once the backfill loop ends, we forward the upstream directly to the downstream.
216 if to_backfill {
217 let mut upstream_chunk_buffer: Vec<StreamChunk> = vec![];
218 let mut pending_barrier: Option<Barrier> = None;
219
220 let metrics = self
221 .metrics
222 .new_backfill_metrics(upstream_table_id, self.actor_id);
223
224 'backfill_loop: loop {
225 let mut cur_barrier_snapshot_processed_rows: u64 = 0;
226 let mut cur_barrier_upstream_processed_rows: u64 = 0;
227 let mut snapshot_read_complete = false;
228 let mut has_snapshot_read = false;
229
230 // NOTE(kwannoel): Scope it so that immutable reference to `upstream_table` can be
231 // dropped. Then we can write to `upstream_table` on barrier in the
232 // next block.
233 {
234 let left_upstream = upstream.by_ref().map(Either::Left);
235
236 // Check if stream paused
237 let paused = global_pause
238 || backfill_paused
239 || matches!(self.rate_limiter.rate_limit(), RateLimit::Pause);
240 // Create the snapshot stream
241 let right_snapshot = pin!(
242 Self::make_snapshot_stream(
243 &upstream_table,
244 backfill_state.clone(), // FIXME: Use mutable reference instead.
245 paused,
246 &self.rate_limiter,
247 )
248 .map(Either::Right)
249 );
250
251 // Prefer to select upstream, so we can stop snapshot stream as soon as the
252 // barrier comes.
253 let mut backfill_stream =
254 select_with_strategy(left_upstream, right_snapshot, |_: &mut ()| {
255 stream::PollNext::Left
256 });
257
258 #[for_await]
259 for either in &mut backfill_stream {
260 match either {
261 // Upstream
262 Either::Left(msg) => {
263 match msg? {
264 Message::Barrier(barrier) => {
265 // We have to process the barrier outside of the loop.
266 // This is because our state_table reference is still live
267 // here, we have to break the loop to drop it,
268 // so we can do replication of upstream state_table.
269 pending_barrier = Some(barrier);
270
271 // Break the for loop and start a new snapshot read stream.
272 break;
273 }
274 Message::Chunk(chunk) => {
275 // Buffer the upstream chunk.
276 upstream_chunk_buffer.push(chunk.compact());
277 }
278 Message::Watermark(_) => {
279 // Ignore watermark during backfill.
280 }
281 }
282 }
283 // Snapshot read
284 Either::Right(msg) => {
285 has_snapshot_read = true;
286 match msg? {
287 None => {
288 // Consume remaining rows in the builder.
289 for (vnode, builder) in &mut builders {
290 if let Some(data_chunk) = builder.consume_all() {
291 yield Message::Chunk(Self::handle_snapshot_chunk(
292 data_chunk,
293 *vnode,
294 &pk_in_output_indices,
295 &mut backfill_state,
296 &mut cur_barrier_snapshot_processed_rows,
297 &mut total_snapshot_processed_rows,
298 &self.output_indices,
299 )?);
300 }
301 }
302
303 // End of the snapshot read stream.
304 // We should not mark the chunk anymore,
305 // otherwise, we will ignore some rows
306 // in the buffer. Here we choose to never mark the chunk.
307 // Consume with the renaming stream buffer chunk without
308 // mark.
309 for chunk in upstream_chunk_buffer.drain(..) {
310 let chunk_cardinality = chunk.cardinality() as u64;
311 cur_barrier_upstream_processed_rows +=
312 chunk_cardinality;
313 yield Message::Chunk(mapping_chunk(
314 chunk,
315 &self.output_indices,
316 ));
317 }
318 metrics
319 .backfill_snapshot_read_row_count
320 .inc_by(cur_barrier_snapshot_processed_rows);
321 metrics
322 .backfill_upstream_output_row_count
323 .inc_by(cur_barrier_upstream_processed_rows);
324 break 'backfill_loop;
325 }
326 Some((vnode, row)) => {
327 let builder = builders.get_mut(&vnode).unwrap();
328 if let Some(chunk) = builder.append_one_row(row) {
329 yield Message::Chunk(Self::handle_snapshot_chunk(
330 chunk,
331 vnode,
332 &pk_in_output_indices,
333 &mut backfill_state,
334 &mut cur_barrier_snapshot_processed_rows,
335 &mut total_snapshot_processed_rows,
336 &self.output_indices,
337 )?);
338 }
339 }
340 }
341 }
342 }
343 }
344
345 // Before processing barrier, if did not snapshot read,
346 // do a snapshot read first.
347 // This is so we don't lose the tombstone iteration progress.
348 // Or if s3 read latency is high, we don't fail to read from s3.
349 //
350 // If paused, we can't read any snapshot records, skip this.
351 //
352 // If rate limit is set, respect the rate limit, check if we can read,
353 // If we can't, skip it. If no rate limit set, we can read.
354 let rate_limit_ready = self.rate_limiter.check(1).is_ok();
355 if !has_snapshot_read && !paused && rate_limit_ready {
356 debug_assert!(builders.values().all(|b| b.is_empty()));
357 let (_, snapshot) = backfill_stream.into_inner();
358 #[for_await]
359 for msg in snapshot {
360 let Either::Right(msg) = msg else {
361 bail!("BUG: snapshot_read contains upstream messages");
362 };
363 match msg? {
364 None => {
365 // End of the snapshot read stream.
366 // We let the barrier handling logic take care of upstream updates.
367 // But we still want to exit backfill loop, so we mark snapshot read complete.
368 snapshot_read_complete = true;
369 break;
370 }
371 Some((vnode, row)) => {
372 let builder = builders.get_mut(&vnode).unwrap();
373 if let Some(chunk) = builder.append_one_row(row) {
374 yield Message::Chunk(Self::handle_snapshot_chunk(
375 chunk,
376 vnode,
377 &pk_in_output_indices,
378 &mut backfill_state,
379 &mut cur_barrier_snapshot_processed_rows,
380 &mut total_snapshot_processed_rows,
381 &self.output_indices,
382 )?);
383 }
384
385 break;
386 }
387 }
388 }
389 }
390 }
391
392 // Process barrier
393 // When we break out of inner backfill_stream loop, it means we have a barrier.
394 // If there are no updates and there are no snapshots left,
395 // we already finished backfill and should have exited the outer backfill loop.
396 let barrier = match pending_barrier.take() {
397 Some(barrier) => barrier,
398 None => bail!("BUG: current_backfill loop exited without a barrier"),
399 };
400
401 // Process barrier:
402 // - consume snapshot rows left in builder.
403 // - consume upstream buffer chunk
404 // - handle mutations
405 // - switch snapshot
406
407 // consume snapshot rows left in builder.
408 // NOTE(kwannoel): `zip_eq_debug` does not work here,
409 // we encounter "higher-ranked lifetime error".
410 for (vnode, chunk) in builders.iter_mut().map(|(vnode, b)| {
411 let chunk = b.consume_all().map(|chunk| {
412 let ops = vec![Op::Insert; chunk.capacity()];
413 StreamChunk::from_parts(ops, chunk)
414 });
415 (vnode, chunk)
416 }) {
417 if let Some(chunk) = chunk {
418 let chunk_cardinality = chunk.cardinality() as u64;
419 // Raise the current position.
420 // As snapshot read streams are ordered by pk, so we can
421 // just use the last row to update `current_pos`.
422 update_pos_by_vnode(
423 *vnode,
424 &chunk,
425 &pk_in_output_indices,
426 &mut backfill_state,
427 chunk_cardinality,
428 )?;
429
430 cur_barrier_snapshot_processed_rows += chunk_cardinality;
431 total_snapshot_processed_rows += chunk_cardinality;
432 yield Message::Chunk(mapping_chunk(chunk, &self.output_indices));
433 }
434 }
435
436 // consume upstream buffer chunk
437 for chunk in upstream_chunk_buffer.drain(..) {
438 cur_barrier_upstream_processed_rows += chunk.cardinality() as u64;
439 // FIXME: Replace with `snapshot_is_processed`
440 // Flush downstream.
441 // If no current_pos, means no snapshot processed yet.
442 // Also means we don't need propagate any updates <= current_pos.
443 if backfill_state.has_progress() {
444 yield Message::Chunk(mapping_chunk(
445 mark_chunk_ref_by_vnode(
446 &chunk,
447 &backfill_state,
448 &pk_in_output_indices,
449 &upstream_table,
450 &pk_order,
451 )?,
452 &self.output_indices,
453 ));
454 }
455
456 // Replicate
457 upstream_table.write_chunk(chunk);
458 }
459
460 upstream_table
461 .commit_assert_no_update_vnode_bitmap(barrier.epoch)
462 .await?;
463
464 metrics
465 .backfill_snapshot_read_row_count
466 .inc_by(cur_barrier_snapshot_processed_rows);
467 metrics
468 .backfill_upstream_output_row_count
469 .inc_by(cur_barrier_upstream_processed_rows);
470
471 // Update snapshot read epoch.
472 snapshot_read_epoch = barrier.epoch.prev;
473
474 // TODO(kwannoel): Not sure if this holds for arrangement backfill.
475 // May need to revisit it.
476 // Need to check it after scale-in / scale-out.
477 self.progress.update(
478 barrier.epoch,
479 snapshot_read_epoch,
480 total_snapshot_processed_rows,
481 );
482
483 // Persist state on barrier
484 persist_state_per_vnode(
485 barrier.epoch,
486 &mut self.state_table,
487 &mut backfill_state,
488 #[cfg(debug_assertions)]
489 state_len,
490 vnodes.iter_vnodes(),
491 )
492 .await?;
493
494 tracing::trace!(
495 barrier = ?barrier,
496 "barrier persisted"
497 );
498
499 // handle mutations
500 if let Some(mutation) = barrier.mutation.as_deref() {
501 use crate::executor::Mutation;
502 match mutation {
503 Mutation::Pause => {
504 global_pause = true;
505 }
506 Mutation::Resume => {
507 global_pause = false;
508 }
509 Mutation::StartFragmentBackfill { fragment_ids } if backfill_paused => {
510 if fragment_ids.contains(&self.fragment_id) {
511 backfill_paused = false;
512 }
513 }
514 Mutation::Throttle(actor_to_apply) => {
515 let new_rate_limit_entry = actor_to_apply.get(&self.actor_id);
516 if let Some(new_rate_limit) = new_rate_limit_entry {
517 let new_rate_limit = (*new_rate_limit).into();
518 let old_rate_limit = self.rate_limiter.update(new_rate_limit);
519 if old_rate_limit != new_rate_limit {
520 tracing::info!(
521 old_rate_limit = ?old_rate_limit,
522 new_rate_limit = ?new_rate_limit,
523 upstream_table_id = upstream_table_id,
524 actor_id = self.actor_id,
525 "backfill rate limit changed",
526 );
527 builders = upstream_table
528 .vnodes()
529 .iter_vnodes()
530 .map(|vnode| {
531 let builder = create_builder(
532 new_rate_limit,
533 self.chunk_size,
534 snapshot_data_types.clone(),
535 );
536 (vnode, builder)
537 })
538 .collect();
539 }
540 }
541 }
542 _ => {}
543 }
544 }
545
546 yield Message::Barrier(barrier);
547
548 // We will switch snapshot at the start of the next iteration of the backfill loop.
549 // Unless snapshot read is already completed.
550 if snapshot_read_complete {
551 break 'backfill_loop;
552 }
553 }
554 }
555
556 tracing::debug!("snapshot read finished, wait to commit state on next barrier");
557
558 // Update our progress as finished in state table.
559
560 // Wait for first barrier to come after backfill is finished.
561 // So we can update our progress + persist the status.
562 while let Some(Ok(msg)) = upstream.next().await {
563 if let Some(msg) = mapping_message(msg, &self.output_indices) {
564 // If not finished then we need to update state, otherwise no need.
565 if let Message::Barrier(barrier) = &msg {
566 if is_completely_finished {
567 // If already finished, no need to persist any state. But we need to advance the epoch anyway
568 self.state_table
569 .commit_assert_no_update_vnode_bitmap(barrier.epoch)
570 .await?;
571 } else {
572 // If snapshot was empty, we do not need to backfill,
573 // but we still need to persist the finished state.
574 // We currently persist it on the second barrier here rather than first.
575 // This is because we can't update state table in first epoch,
576 // since it expects to have been initialized in previous epoch
577 // (there's no epoch before the first epoch).
578 for vnode in upstream_table.vnodes().iter_vnodes() {
579 backfill_state
580 .finish_progress(vnode, upstream_table.pk_indices().len());
581 }
582
583 persist_state_per_vnode(
584 barrier.epoch,
585 &mut self.state_table,
586 &mut backfill_state,
587 #[cfg(debug_assertions)]
588 state_len,
589 vnodes.iter_vnodes(),
590 )
591 .await?;
592 }
593
594 self.progress
595 .finish(barrier.epoch, total_snapshot_processed_rows);
596 yield msg;
597 break;
598 }
599 // Allow other messages to pass through.
600 // We won't yield twice here, since if there's a barrier,
601 // we will always break out of the loop.
602 yield msg;
603 }
604 }
605
606 tracing::debug!("backfill finished");
607
608 // After progress finished + state persisted,
609 // we can forward messages directly to the downstream,
610 // as backfill is finished.
611 #[for_await]
612 for msg in upstream {
613 if let Some(msg) = mapping_message(msg?, &self.output_indices) {
614 if let Message::Barrier(barrier) = &msg {
615 // If already finished, no need persist any state, but we need to advance the epoch of the state table anyway.
616 self.state_table
617 .commit_assert_no_update_vnode_bitmap(barrier.epoch)
618 .await?;
619 }
620 yield msg;
621 }
622 }
623 }
624
625 #[try_stream(ok = Option<(VirtualNode, OwnedRow)>, error = StreamExecutorError)]
626 async fn make_snapshot_stream<'a>(
627 upstream_table: &'a ReplicatedStateTable<S, SD>,
628 backfill_state: BackfillState,
629 paused: bool,
630 rate_limiter: &'a MonitoredRateLimiter,
631 ) {
632 if paused {
633 #[for_await]
634 for _ in tokio_stream::pending() {
635 bail!("BUG: paused stream should not yield");
636 }
637 } else {
638 // Checked the rate limit is not zero.
639 #[for_await]
640 for r in Self::snapshot_read_per_vnode(upstream_table, backfill_state) {
641 let r = r?;
642 rate_limiter.wait(1).await;
643 yield r;
644 }
645 }
646 }
647
648 fn handle_snapshot_chunk(
649 chunk: DataChunk,
650 vnode: VirtualNode,
651 pk_in_output_indices: &[usize],
652 backfill_state: &mut BackfillState,
653 cur_barrier_snapshot_processed_rows: &mut u64,
654 total_snapshot_processed_rows: &mut u64,
655 output_indices: &[usize],
656 ) -> StreamExecutorResult<StreamChunk> {
657 let chunk = StreamChunk::from_parts(vec![Op::Insert; chunk.capacity()], chunk);
658 // Raise the current position.
659 // As snapshot read streams are ordered by pk, so we can
660 // just use the last row to update `current_pos`.
661 let snapshot_row_count_delta = chunk.cardinality() as u64;
662 update_pos_by_vnode(
663 vnode,
664 &chunk,
665 pk_in_output_indices,
666 backfill_state,
667 snapshot_row_count_delta,
668 )?;
669
670 let chunk_cardinality = chunk.cardinality() as u64;
671 *cur_barrier_snapshot_processed_rows += chunk_cardinality;
672 *total_snapshot_processed_rows += chunk_cardinality;
673 Ok(mapping_chunk(chunk, output_indices))
674 }
675
676 /// Read snapshot per vnode.
677 /// These streams should be sorted in storage layer.
678 /// 1. Get row iterator / vnode.
679 /// 2. Merge it with `select_all`.
680 /// 3. Change it into a chunk iterator with `iter_chunks`.
681 /// This means it should fetch a row from each iterator to form a chunk.
682 ///
683 /// We interleave at chunk per vnode level rather than rows.
684 /// This is so that we can compute `current_pos` once per chunk, since they correspond to 1
685 /// vnode.
686 ///
687 /// The stream contains pairs of `(VirtualNode, StreamChunk)`.
688 /// The `VirtualNode` is the vnode that the chunk belongs to.
689 /// The `StreamChunk` is the chunk that contains the rows from the vnode.
690 /// If it's `None`, it means the vnode has no more rows for this snapshot read.
691 ///
692 /// The `snapshot_read_epoch` is supplied as a parameter for `state_table`.
693 /// It is required to ensure we read a fully-checkpointed snapshot the **first time**.
694 ///
695 /// The rows from upstream snapshot read will be buffered inside the `builder`.
696 /// If snapshot is dropped before its rows are consumed,
697 /// remaining data in `builder` must be flushed manually.
698 /// Otherwise when we scan a new snapshot, it is possible the rows in the `builder` would be
699 /// present, Then when we flush we contain duplicate rows.
700 #[try_stream(ok = Option<(VirtualNode, OwnedRow)>, error = StreamExecutorError)]
701 async fn snapshot_read_per_vnode(
702 upstream_table: &ReplicatedStateTable<S, SD>,
703 backfill_state: BackfillState,
704 ) {
705 let mut iterators = vec![];
706 for vnode in upstream_table.vnodes().iter_vnodes() {
707 let backfill_progress = backfill_state.get_progress(&vnode)?;
708 let current_pos = match backfill_progress {
709 BackfillProgressPerVnode::NotStarted => None,
710 BackfillProgressPerVnode::Completed { .. } => {
711 continue;
712 }
713 BackfillProgressPerVnode::InProgress { current_pos, .. } => {
714 Some(current_pos.clone())
715 }
716 };
717
718 let range_bounds = compute_bounds(upstream_table.pk_indices(), current_pos.clone());
719 if range_bounds.is_none() {
720 continue;
721 }
722 let range_bounds = range_bounds.unwrap();
723
724 tracing::trace!(
725 vnode = ?vnode,
726 current_pos = ?current_pos,
727 range_bounds = ?range_bounds,
728 "iter_with_vnode_and_output_indices"
729 );
730 let vnode_row_iter = upstream_table
731 .iter_with_vnode_and_output_indices(
732 vnode,
733 &range_bounds,
734 PrefetchOptions::prefetch_for_small_range_scan(),
735 )
736 .await?;
737
738 let vnode_row_iter = vnode_row_iter.map_ok(move |row| (vnode, row));
739
740 let vnode_row_iter = Box::pin(vnode_row_iter);
741
742 iterators.push(vnode_row_iter);
743 }
744
745 // TODO(kwannoel): We can provide an option between snapshot read in parallel vs serial.
746 let vnode_row_iter = select_all(iterators);
747
748 #[for_await]
749 for vnode_and_row in vnode_row_iter {
750 yield Some(vnode_and_row?);
751 }
752 yield None;
753 return Ok(());
754 }
755}
756
757impl<S, SD> Execute for ArrangementBackfillExecutor<S, SD>
758where
759 S: StateStore,
760 SD: ValueRowSerde,
761{
762 fn execute(self: Box<Self>) -> BoxedMessageStream {
763 self.execute_inner().boxed()
764 }
765}