risingwave_stream/executor/backfill/arrangement_backfill.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::HashMap;
use either::Either;
use futures::stream::{select_all, select_with_strategy};
use futures::{stream, TryStreamExt};
use itertools::Itertools;
use risingwave_common::array::{DataChunk, Op};
use risingwave_common::bail;
use risingwave_common::hash::{VirtualNode, VnodeBitmapExt};
use risingwave_common::util::chunk_coalesce::DataChunkBuilder;
use risingwave_storage::row_serde::value_serde::ValueRowSerde;
use risingwave_storage::store::PrefetchOptions;
use crate::common::table::state_table::ReplicatedStateTable;
#[cfg(debug_assertions)]
use crate::executor::backfill::utils::METADATA_STATE_LEN;
use crate::executor::backfill::utils::{
compute_bounds, create_builder, create_limiter, get_progress_per_vnode, mapping_chunk,
mapping_message, mark_chunk_ref_by_vnode, owned_row_iter, persist_state_per_vnode,
update_pos_by_vnode, BackfillProgressPerVnode, BackfillRateLimiter, BackfillState,
};
use crate::executor::prelude::*;
use crate::task::CreateMviewProgressReporter;
type Builders = HashMap<VirtualNode, DataChunkBuilder>;
/// Similar to [`super::no_shuffle_backfill::BackfillExecutor`].
/// Main differences:
/// - [`ArrangementBackfillExecutor`] can reside on a different CN, so it can be scaled
/// independently.
/// - To synchronize upstream shared buffer, it is initialized with a [`ReplicatedStateTable`].
pub struct ArrangementBackfillExecutor<S: StateStore, SD: ValueRowSerde> {
/// Upstream table
upstream_table: ReplicatedStateTable<S, SD>,
/// Upstream with the same schema with the upstream table.
upstream: Executor,
/// Internal state table for persisting state of backfill state.
state_table: StateTable<S>,
/// The column indices need to be forwarded to the downstream from the upstream and table scan.
output_indices: Vec<usize>,
progress: CreateMviewProgressReporter,
actor_id: ActorId,
metrics: Arc<StreamingMetrics>,
chunk_size: usize,
rate_limit: Option<usize>,
}
impl<S, SD> ArrangementBackfillExecutor<S, SD>
where
S: StateStore,
SD: ValueRowSerde,
{
#[allow(clippy::too_many_arguments)]
#[allow(dead_code)]
pub fn new(
upstream_table: ReplicatedStateTable<S, SD>,
upstream: Executor,
state_table: StateTable<S>,
output_indices: Vec<usize>,
progress: CreateMviewProgressReporter,
metrics: Arc<StreamingMetrics>,
chunk_size: usize,
rate_limit: Option<usize>,
) -> Self {
Self {
upstream_table,
upstream,
state_table,
output_indices,
actor_id: progress.actor_id(),
progress,
metrics,
chunk_size,
rate_limit,
}
}
#[try_stream(ok = Message, error = StreamExecutorError)]
async fn execute_inner(mut self) {
tracing::debug!("backfill executor started");
// The primary key columns, in the output columns of the upstream_table scan.
// Table scan scans a subset of the columns of the upstream table.
let pk_in_output_indices = self.upstream_table.pk_in_output_indices().unwrap();
#[cfg(debug_assertions)]
let state_len = self.upstream_table.pk_indices().len() + METADATA_STATE_LEN;
let pk_order = self.upstream_table.pk_serde().get_order_types().to_vec();
let upstream_table_id = self.upstream_table.table_id();
let mut upstream_table = self.upstream_table;
let vnodes = upstream_table.vnodes().clone();
let mut rate_limit = self.rate_limit;
// These builders will build data chunks.
// We must supply them with the full datatypes which correspond to
// pk + output_indices.
let snapshot_data_types = self
.upstream
.schema()
.fields()
.iter()
.map(|field| field.data_type.clone())
.collect_vec();
let mut builders: Builders = upstream_table
.vnodes()
.iter_vnodes()
.map(|vnode| {
let builder =
create_builder(rate_limit, self.chunk_size, snapshot_data_types.clone());
(vnode, builder)
})
.collect();
let mut upstream = self.upstream.execute();
// Poll the upstream to get the first barrier.
let first_barrier = expect_first_barrier(&mut upstream).await?;
let mut paused = first_barrier.is_pause_on_startup();
let first_epoch = first_barrier.epoch;
let is_newly_added = first_barrier.is_newly_added(self.actor_id);
// The first barrier message should be propagated.
yield Message::Barrier(first_barrier);
self.state_table.init_epoch(first_epoch).await?;
let progress_per_vnode = get_progress_per_vnode(&self.state_table).await?;
let is_completely_finished = progress_per_vnode.iter().all(|(_, p)| {
matches!(
p.current_state(),
&BackfillProgressPerVnode::Completed { .. }
)
});
if is_completely_finished {
assert!(!is_newly_added);
}
upstream_table.init_epoch(first_epoch).await?;
let mut backfill_state: BackfillState = progress_per_vnode.into();
let to_backfill = !is_completely_finished;
// If no need backfill, but state was still "unfinished" we need to finish it.
// So we just update the state + progress to meta at the next barrier to finish progress,
// and forward other messages.
//
// Reason for persisting on second barrier rather than first:
// We can't update meta with progress as finished until state_table
// has been updated.
// We also can't update state_table in first epoch, since state_table
// expects to have been initialized in previous epoch.
// The epoch used to snapshot read upstream mv.
let mut snapshot_read_epoch;
// Keep track of rows from the snapshot.
let mut total_snapshot_processed_rows: u64 = backfill_state.get_snapshot_row_count();
// Arrangement Backfill Algorithm:
//
// backfill_stream
// / \
// upstream snapshot
//
// We construct a backfill stream with upstream as its left input and mv snapshot read
// stream as its right input. When a chunk comes from upstream, we will buffer it.
//
// When a barrier comes from upstream:
// Immediately break out of backfill loop.
// - For each row of the upstream chunk buffer, compute vnode.
// - Get the `current_pos` corresponding to the vnode. Forward it to downstream if its pk
// <= `current_pos`, otherwise ignore it.
// - Flush all buffered upstream_chunks to replicated state table.
// - Update the `snapshot_read_epoch`.
// - Reconstruct the whole backfill stream with upstream and new mv snapshot read stream
// with the `snapshot_read_epoch`.
//
// When a chunk comes from snapshot, we forward it to the downstream and raise
// `current_pos`.
//
// When we reach the end of the snapshot read stream, it means backfill has been
// finished.
//
// Once the backfill loop ends, we forward the upstream directly to the downstream.
if to_backfill {
let mut upstream_chunk_buffer: Vec<StreamChunk> = vec![];
let mut pending_barrier: Option<Barrier> = None;
let mut rate_limiter = rate_limit.and_then(create_limiter);
let metrics = self
.metrics
.new_backfill_metrics(upstream_table_id, self.actor_id);
'backfill_loop: loop {
let mut cur_barrier_snapshot_processed_rows: u64 = 0;
let mut cur_barrier_upstream_processed_rows: u64 = 0;
let mut snapshot_read_complete = false;
let mut has_snapshot_read = false;
// NOTE(kwannoel): Scope it so that immutable reference to `upstream_table` can be
// dropped. Then we can write to `upstream_table` on barrier in the
// next block.
{
let left_upstream = upstream.by_ref().map(Either::Left);
// Check if stream paused
let paused = paused || matches!(rate_limit, Some(0));
// Create the snapshot stream
let right_snapshot = pin!(Self::make_snapshot_stream(
&upstream_table,
backfill_state.clone(), // FIXME: Use mutable reference instead.
paused,
&rate_limiter,
)
.map(Either::Right));
// Prefer to select upstream, so we can stop snapshot stream as soon as the
// barrier comes.
let mut backfill_stream =
select_with_strategy(left_upstream, right_snapshot, |_: &mut ()| {
stream::PollNext::Left
});
#[for_await]
for either in &mut backfill_stream {
match either {
// Upstream
Either::Left(msg) => {
match msg? {
Message::Barrier(barrier) => {
// We have to process the barrier outside of the loop.
// This is because our state_table reference is still live
// here, we have to break the loop to drop it,
// so we can do replication of upstream state_table.
pending_barrier = Some(barrier);
// Break the for loop and start a new snapshot read stream.
break;
}
Message::Chunk(chunk) => {
// Buffer the upstream chunk.
upstream_chunk_buffer.push(chunk.compact());
}
Message::Watermark(_) => {
// Ignore watermark during backfill.
}
}
}
// Snapshot read
Either::Right(msg) => {
has_snapshot_read = true;
match msg? {
None => {
// Consume remaining rows in the builder.
for (vnode, builder) in &mut builders {
if let Some(data_chunk) = builder.consume_all() {
yield Message::Chunk(Self::handle_snapshot_chunk(
data_chunk,
*vnode,
&pk_in_output_indices,
&mut backfill_state,
&mut cur_barrier_snapshot_processed_rows,
&mut total_snapshot_processed_rows,
&self.output_indices,
)?);
}
}
// End of the snapshot read stream.
// We should not mark the chunk anymore,
// otherwise, we will ignore some rows
// in the buffer. Here we choose to never mark the chunk.
// Consume with the renaming stream buffer chunk without
// mark.
for chunk in upstream_chunk_buffer.drain(..) {
let chunk_cardinality = chunk.cardinality() as u64;
cur_barrier_upstream_processed_rows +=
chunk_cardinality;
yield Message::Chunk(mapping_chunk(
chunk,
&self.output_indices,
));
}
metrics
.backfill_snapshot_read_row_count
.inc_by(cur_barrier_snapshot_processed_rows);
metrics
.backfill_upstream_output_row_count
.inc_by(cur_barrier_upstream_processed_rows);
break 'backfill_loop;
}
Some((vnode, row)) => {
let builder = builders.get_mut(&vnode).unwrap();
if let Some(chunk) = builder.append_one_row(row) {
yield Message::Chunk(Self::handle_snapshot_chunk(
chunk,
vnode,
&pk_in_output_indices,
&mut backfill_state,
&mut cur_barrier_snapshot_processed_rows,
&mut total_snapshot_processed_rows,
&self.output_indices,
)?);
}
}
}
}
}
}
// Before processing barrier, if did not snapshot read,
// do a snapshot read first.
// This is so we don't lose the tombstone iteration progress.
// Or if s3 read latency is high, we don't fail to read from s3.
//
// If paused, we can't read any snapshot records, skip this.
//
// If rate limit is set, respect the rate limit, check if we can read,
// If we can't, skip it. If no rate limit set, we can read.
let rate_limit_ready = rate_limiter
.as_ref()
.map(|r| r.check().is_ok())
.unwrap_or(true);
if !has_snapshot_read && !paused && rate_limit_ready {
debug_assert!(builders.values().all(|b| b.is_empty()));
let (_, snapshot) = backfill_stream.into_inner();
#[for_await]
for msg in snapshot {
let Either::Right(msg) = msg else {
bail!("BUG: snapshot_read contains upstream messages");
};
match msg? {
None => {
// End of the snapshot read stream.
// We let the barrier handling logic take care of upstream updates.
// But we still want to exit backfill loop, so we mark snapshot read complete.
snapshot_read_complete = true;
break;
}
Some((vnode, row)) => {
let builder = builders.get_mut(&vnode).unwrap();
if let Some(chunk) = builder.append_one_row(row) {
yield Message::Chunk(Self::handle_snapshot_chunk(
chunk,
vnode,
&pk_in_output_indices,
&mut backfill_state,
&mut cur_barrier_snapshot_processed_rows,
&mut total_snapshot_processed_rows,
&self.output_indices,
)?);
}
break;
}
}
}
}
}
// Process barrier
// When we break out of inner backfill_stream loop, it means we have a barrier.
// If there are no updates and there are no snapshots left,
// we already finished backfill and should have exited the outer backfill loop.
let barrier = match pending_barrier.take() {
Some(barrier) => barrier,
None => bail!("BUG: current_backfill loop exited without a barrier"),
};
// Process barrier:
// - consume snapshot rows left in builder.
// - consume upstream buffer chunk
// - handle mutations
// - switch snapshot
// consume snapshot rows left in builder.
// NOTE(kwannoel): `zip_eq_debug` does not work here,
// we encounter "higher-ranked lifetime error".
for (vnode, chunk) in builders.iter_mut().map(|(vnode, b)| {
let chunk = b.consume_all().map(|chunk| {
let ops = vec![Op::Insert; chunk.capacity()];
StreamChunk::from_parts(ops, chunk)
});
(vnode, chunk)
}) {
if let Some(chunk) = chunk {
let chunk_cardinality = chunk.cardinality() as u64;
// Raise the current position.
// As snapshot read streams are ordered by pk, so we can
// just use the last row to update `current_pos`.
update_pos_by_vnode(
*vnode,
&chunk,
&pk_in_output_indices,
&mut backfill_state,
chunk_cardinality,
)?;
cur_barrier_snapshot_processed_rows += chunk_cardinality;
total_snapshot_processed_rows += chunk_cardinality;
yield Message::Chunk(mapping_chunk(chunk, &self.output_indices));
}
}
// consume upstream buffer chunk
for chunk in upstream_chunk_buffer.drain(..) {
cur_barrier_upstream_processed_rows += chunk.cardinality() as u64;
// FIXME: Replace with `snapshot_is_processed`
// Flush downstream.
// If no current_pos, means no snapshot processed yet.
// Also means we don't need propagate any updates <= current_pos.
if backfill_state.has_progress() {
yield Message::Chunk(mapping_chunk(
mark_chunk_ref_by_vnode(
&chunk,
&backfill_state,
&pk_in_output_indices,
&upstream_table,
&pk_order,
)?,
&self.output_indices,
));
}
// Replicate
upstream_table.write_chunk(chunk);
}
upstream_table.commit(barrier.epoch).await?;
metrics
.backfill_snapshot_read_row_count
.inc_by(cur_barrier_snapshot_processed_rows);
metrics
.backfill_upstream_output_row_count
.inc_by(cur_barrier_upstream_processed_rows);
// Update snapshot read epoch.
snapshot_read_epoch = barrier.epoch.prev;
// TODO(kwannoel): Not sure if this holds for arrangement backfill.
// May need to revisit it.
// Need to check it after scale-in / scale-out.
self.progress.update(
barrier.epoch,
snapshot_read_epoch,
total_snapshot_processed_rows,
);
// Persist state on barrier
persist_state_per_vnode(
barrier.epoch,
&mut self.state_table,
&mut backfill_state,
#[cfg(debug_assertions)]
state_len,
vnodes.iter_vnodes(),
)
.await?;
tracing::trace!(
barrier = ?barrier,
"barrier persisted"
);
// handle mutations
if let Some(mutation) = barrier.mutation.as_deref() {
use crate::executor::Mutation;
match mutation {
Mutation::Pause => {
paused = true;
}
Mutation::Resume => {
paused = false;
}
Mutation::Throttle(actor_to_apply) => {
let new_rate_limit_entry = actor_to_apply.get(&self.actor_id);
if let Some(new_rate_limit) = new_rate_limit_entry {
let new_rate_limit = new_rate_limit.as_ref().map(|x| *x as _);
if new_rate_limit != rate_limit {
rate_limit = new_rate_limit;
tracing::info!(
new_rate_limit = ?rate_limit,
"rate limit changed",
);
// The builder is emptied above via `DataChunkBuilder::consume_all`.
for (_, builder) in builders {
assert!(
builder.is_empty(),
"builder should already be emptied"
);
}
builders = upstream_table
.vnodes()
.iter_vnodes()
.map(|vnode| {
let builder = create_builder(
rate_limit,
self.chunk_size,
snapshot_data_types.clone(),
);
(vnode, builder)
})
.collect();
rate_limiter = new_rate_limit.and_then(create_limiter);
}
}
}
_ => {}
}
}
yield Message::Barrier(barrier);
// We will switch snapshot at the start of the next iteration of the backfill loop.
// Unless snapshot read is already completed.
if snapshot_read_complete {
break 'backfill_loop;
}
}
}
tracing::debug!("snapshot read finished, wait to commit state on next barrier");
// Update our progress as finished in state table.
// Wait for first barrier to come after backfill is finished.
// So we can update our progress + persist the status.
while let Some(Ok(msg)) = upstream.next().await {
if let Some(msg) = mapping_message(msg, &self.output_indices) {
// If not finished then we need to update state, otherwise no need.
if let Message::Barrier(barrier) = &msg {
if is_completely_finished {
// If already finished, no need to persist any state. But we need to advance the epoch anyway
self.state_table.commit(barrier.epoch).await?;
} else {
// If snapshot was empty, we do not need to backfill,
// but we still need to persist the finished state.
// We currently persist it on the second barrier here rather than first.
// This is because we can't update state table in first epoch,
// since it expects to have been initialized in previous epoch
// (there's no epoch before the first epoch).
for vnode in upstream_table.vnodes().iter_vnodes() {
backfill_state
.finish_progress(vnode, upstream_table.pk_indices().len());
}
persist_state_per_vnode(
barrier.epoch,
&mut self.state_table,
&mut backfill_state,
#[cfg(debug_assertions)]
state_len,
vnodes.iter_vnodes(),
)
.await?;
}
self.progress
.finish(barrier.epoch, total_snapshot_processed_rows);
yield msg;
break;
}
// Allow other messages to pass through.
// We won't yield twice here, since if there's a barrier,
// we will always break out of the loop.
yield msg;
}
}
tracing::debug!("backfill finished");
// After progress finished + state persisted,
// we can forward messages directly to the downstream,
// as backfill is finished.
#[for_await]
for msg in upstream {
if let Some(msg) = mapping_message(msg?, &self.output_indices) {
if let Message::Barrier(barrier) = &msg {
// If already finished, no need persist any state, but we need to advance the epoch of the state table anyway.
self.state_table.commit(barrier.epoch).await?;
}
yield msg;
}
}
}
#[try_stream(ok = Option<(VirtualNode, OwnedRow)>, error = StreamExecutorError)]
async fn make_snapshot_stream<'a>(
upstream_table: &'a ReplicatedStateTable<S, SD>,
backfill_state: BackfillState,
paused: bool,
rate_limiter: &'a Option<BackfillRateLimiter>,
) {
if paused {
#[for_await]
for _ in tokio_stream::pending() {
bail!("BUG: paused stream should not yield");
}
} else {
// Checked the rate limit is not zero.
#[for_await]
for r in Self::snapshot_read_per_vnode(upstream_table, backfill_state) {
let r = r?;
if let Some(rate_limit) = rate_limiter {
rate_limit.until_ready().await;
}
yield r;
}
}
}
fn handle_snapshot_chunk(
chunk: DataChunk,
vnode: VirtualNode,
pk_in_output_indices: &[usize],
backfill_state: &mut BackfillState,
cur_barrier_snapshot_processed_rows: &mut u64,
total_snapshot_processed_rows: &mut u64,
output_indices: &[usize],
) -> StreamExecutorResult<StreamChunk> {
let chunk = StreamChunk::from_parts(vec![Op::Insert; chunk.capacity()], chunk);
// Raise the current position.
// As snapshot read streams are ordered by pk, so we can
// just use the last row to update `current_pos`.
let snapshot_row_count_delta = chunk.cardinality() as u64;
update_pos_by_vnode(
vnode,
&chunk,
pk_in_output_indices,
backfill_state,
snapshot_row_count_delta,
)?;
let chunk_cardinality = chunk.cardinality() as u64;
*cur_barrier_snapshot_processed_rows += chunk_cardinality;
*total_snapshot_processed_rows += chunk_cardinality;
Ok(mapping_chunk(chunk, output_indices))
}
/// Read snapshot per vnode.
/// These streams should be sorted in storage layer.
/// 1. Get row iterator / vnode.
/// 2. Merge it with `select_all`.
/// 3. Change it into a chunk iterator with `iter_chunks`.
/// This means it should fetch a row from each iterator to form a chunk.
///
/// We interleave at chunk per vnode level rather than rows.
/// This is so that we can compute `current_pos` once per chunk, since they correspond to 1
/// vnode.
///
/// The stream contains pairs of `(VirtualNode, StreamChunk)`.
/// The `VirtualNode` is the vnode that the chunk belongs to.
/// The `StreamChunk` is the chunk that contains the rows from the vnode.
/// If it's `None`, it means the vnode has no more rows for this snapshot read.
///
/// The `snapshot_read_epoch` is supplied as a parameter for `state_table`.
/// It is required to ensure we read a fully-checkpointed snapshot the **first time**.
///
/// The rows from upstream snapshot read will be buffered inside the `builder`.
/// If snapshot is dropped before its rows are consumed,
/// remaining data in `builder` must be flushed manually.
/// Otherwise when we scan a new snapshot, it is possible the rows in the `builder` would be
/// present, Then when we flush we contain duplicate rows.
#[try_stream(ok = Option<(VirtualNode, OwnedRow)>, error = StreamExecutorError)]
async fn snapshot_read_per_vnode(
upstream_table: &ReplicatedStateTable<S, SD>,
backfill_state: BackfillState,
) {
let mut iterators = vec![];
for vnode in upstream_table.vnodes().iter_vnodes() {
let backfill_progress = backfill_state.get_progress(&vnode)?;
let current_pos = match backfill_progress {
BackfillProgressPerVnode::NotStarted => None,
BackfillProgressPerVnode::Completed { current_pos, .. }
| BackfillProgressPerVnode::InProgress { current_pos, .. } => {
Some(current_pos.clone())
}
};
let range_bounds = compute_bounds(upstream_table.pk_indices(), current_pos.clone());
if range_bounds.is_none() {
continue;
}
let range_bounds = range_bounds.unwrap();
tracing::trace!(
vnode = ?vnode,
current_pos = ?current_pos,
range_bounds = ?range_bounds,
"iter_with_vnode_and_output_indices"
);
let vnode_row_iter = upstream_table
.iter_with_vnode_and_output_indices(
vnode,
&range_bounds,
PrefetchOptions::prefetch_for_small_range_scan(),
)
.await?;
let vnode_row_iter = Box::pin(owned_row_iter(vnode_row_iter));
let vnode_row_iter = vnode_row_iter.map_ok(move |row| (vnode, row));
let vnode_row_iter = Box::pin(vnode_row_iter);
iterators.push(vnode_row_iter);
}
// TODO(kwannoel): We can provide an option between snapshot read in parallel vs serial.
let vnode_row_iter = select_all(iterators);
#[for_await]
for vnode_and_row in vnode_row_iter {
yield Some(vnode_and_row?);
}
yield None;
return Ok(());
}
}
impl<S, SD> Execute for ArrangementBackfillExecutor<S, SD>
where
S: StateStore,
SD: ValueRowSerde,
{
fn execute(self: Box<Self>) -> BoxedMessageStream {
self.execute_inner().boxed()
}
}