risingwave_stream/executor/over_window/
general.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::{btree_map, BTreeMap, HashSet};
use std::marker::PhantomData;
use std::ops::RangeInclusive;

use delta_btree_map::Change;
use itertools::Itertools;
use risingwave_common::array::stream_record::Record;
use risingwave_common::array::Op;
use risingwave_common::row::RowExt;
use risingwave_common::session_config::OverWindowCachePolicy as CachePolicy;
use risingwave_common::types::DefaultOrdered;
use risingwave_common::util::memcmp_encoding::{self, MemcmpEncoded};
use risingwave_common::util::sort_util::OrderType;
use risingwave_expr::window_function::{
    RangeFrameBounds, RowsFrameBounds, StateKey, WindowFuncCall,
};

use super::frame_finder::merge_rows_frames;
use super::over_partition::{
    new_empty_partition_cache, shrink_partition_cache, CacheKey, OverPartition, PartitionCache,
    PartitionDelta,
};
use crate::cache::ManagedLruCache;
use crate::common::metrics::MetricsInfo;
use crate::consistency::consistency_panic;
use crate::executor::monitor::OverWindowMetrics;
use crate::executor::prelude::*;

/// [`OverWindowExecutor`] consumes retractable input stream and produces window function outputs.
/// One [`OverWindowExecutor`] can handle one combination of partition key and order key.
///
/// - State table schema = output schema, state table pk = `partition key | order key | input pk`.
/// - Output schema = input schema + window function results.
pub struct OverWindowExecutor<S: StateStore> {
    input: Executor,
    inner: ExecutorInner<S>,
}

struct ExecutorInner<S: StateStore> {
    actor_ctx: ActorContextRef,

    schema: Schema,
    calls: Calls,
    deduped_part_key_indices: Vec<usize>,
    order_key_indices: Vec<usize>,
    order_key_data_types: Vec<DataType>,
    order_key_order_types: Vec<OrderType>,
    input_pk_indices: Vec<usize>,
    state_key_to_table_sub_pk_proj: Vec<usize>,

    state_table: StateTable<S>,
    watermark_sequence: AtomicU64Ref,

    /// The maximum size of the chunk produced by executor at a time.
    chunk_size: usize,
    cache_policy: CachePolicy,
}

struct ExecutionVars<S: StateStore> {
    /// partition key => partition range cache.
    cached_partitions: ManagedLruCache<OwnedRow, PartitionCache>,
    /// partition key => recently accessed range.
    recently_accessed_ranges: BTreeMap<DefaultOrdered<OwnedRow>, RangeInclusive<StateKey>>,
    stats: ExecutionStats,
    _phantom: PhantomData<S>,
}

#[derive(Default)]
struct ExecutionStats {
    cache_miss: u64,
    cache_lookup: u64,
}

impl<S: StateStore> Execute for OverWindowExecutor<S> {
    fn execute(self: Box<Self>) -> crate::executor::BoxedMessageStream {
        self.executor_inner().boxed()
    }
}

impl<S: StateStore> ExecutorInner<S> {
    /// Get deduplicated partition key from a full row, which happened to be the prefix of table PK.
    fn get_partition_key(&self, full_row: impl Row) -> OwnedRow {
        full_row
            .project(&self.deduped_part_key_indices)
            .into_owned_row()
    }

    fn get_input_pk(&self, full_row: impl Row) -> OwnedRow {
        full_row.project(&self.input_pk_indices).into_owned_row()
    }

    /// `full_row` can be an input row or state table row.
    fn encode_order_key(&self, full_row: impl Row) -> StreamExecutorResult<MemcmpEncoded> {
        Ok(memcmp_encoding::encode_row(
            full_row.project(&self.order_key_indices),
            &self.order_key_order_types,
        )?)
    }

    fn row_to_cache_key(&self, full_row: impl Row + Copy) -> StreamExecutorResult<CacheKey> {
        Ok(CacheKey::Normal(StateKey {
            order_key: self.encode_order_key(full_row)?,
            pk: self.get_input_pk(full_row).into(),
        }))
    }
}

pub struct OverWindowExecutorArgs<S: StateStore> {
    pub actor_ctx: ActorContextRef,

    pub input: Executor,

    pub schema: Schema,
    pub calls: Vec<WindowFuncCall>,
    pub partition_key_indices: Vec<usize>,
    pub order_key_indices: Vec<usize>,
    pub order_key_order_types: Vec<OrderType>,

    pub state_table: StateTable<S>,
    pub watermark_epoch: AtomicU64Ref,
    pub metrics: Arc<StreamingMetrics>,

    pub chunk_size: usize,
    pub cache_policy: CachePolicy,
}

/// Information about the window function calls.
/// Contains the original calls and many other information that can be derived from the calls to avoid
/// repeated calculation.
pub(super) struct Calls {
    calls: Vec<WindowFuncCall>,

    /// The `ROWS` frame that is the union of all `ROWS` frames.
    pub(super) super_rows_frame_bounds: RowsFrameBounds,
    /// All `RANGE` frames.
    pub(super) range_frames: Vec<RangeFrameBounds>,
    pub(super) start_is_unbounded: bool,
    pub(super) end_is_unbounded: bool,
    /// Deduplicated indices of all arguments of all calls.
    pub(super) all_arg_indices: Vec<usize>,

    // TODO(rc): The following flags are used to optimize for `row_number`, `rank` and `dense_rank`.
    // We should try our best to remove these flags while maintaining the performance in the future.
    pub(super) numbering_only: bool,
    pub(super) has_rank: bool,
}

impl Calls {
    fn new(calls: Vec<WindowFuncCall>) -> Self {
        let rows_frames = calls
            .iter()
            .filter_map(|call| call.frame.bounds.as_rows())
            .collect::<Vec<_>>();
        let super_rows_frame_bounds = merge_rows_frames(&rows_frames);
        let range_frames = calls
            .iter()
            .filter_map(|call| call.frame.bounds.as_range())
            .cloned()
            .collect::<Vec<_>>();

        let start_is_unbounded = calls
            .iter()
            .any(|call| call.frame.bounds.start_is_unbounded());
        let end_is_unbounded = calls
            .iter()
            .any(|call| call.frame.bounds.end_is_unbounded());

        let all_arg_indices = calls
            .iter()
            .flat_map(|call| call.args.val_indices().iter().copied())
            .dedup()
            .collect();

        let numbering_only = calls.iter().all(|call| call.kind.is_numbering());
        let has_rank = calls.iter().any(|call| call.kind.is_rank());

        Self {
            calls,
            super_rows_frame_bounds,
            range_frames,
            start_is_unbounded,
            end_is_unbounded,
            all_arg_indices,
            numbering_only,
            has_rank,
        }
    }

    pub(super) fn iter(&self) -> impl ExactSizeIterator<Item = &WindowFuncCall> {
        self.calls.iter()
    }

    pub(super) fn len(&self) -> usize {
        self.calls.len()
    }
}

impl<S: StateStore> OverWindowExecutor<S> {
    pub fn new(args: OverWindowExecutorArgs<S>) -> Self {
        let calls = Calls::new(args.calls);

        let input_info = args.input.info().clone();
        let input_schema = &input_info.schema;

        let has_unbounded_frame = calls.start_is_unbounded || calls.end_is_unbounded;
        let cache_policy = if has_unbounded_frame {
            // For unbounded frames, we finally need all entries of the partition in the cache,
            // so for simplicity we just use full cache policy for these cases.
            CachePolicy::Full
        } else {
            args.cache_policy
        };

        let order_key_data_types = args
            .order_key_indices
            .iter()
            .map(|i| input_schema[*i].data_type())
            .collect();

        let state_key_to_table_sub_pk_proj = RowConverter::calc_state_key_to_table_sub_pk_proj(
            &args.partition_key_indices,
            &args.order_key_indices,
            &input_info.pk_indices,
        );

        let deduped_part_key_indices = {
            let mut dedup = HashSet::new();
            args.partition_key_indices
                .iter()
                .filter(|i| dedup.insert(**i))
                .copied()
                .collect()
        };

        Self {
            input: args.input,
            inner: ExecutorInner {
                actor_ctx: args.actor_ctx,
                schema: args.schema,
                calls,
                deduped_part_key_indices,
                order_key_indices: args.order_key_indices,
                order_key_data_types,
                order_key_order_types: args.order_key_order_types,
                input_pk_indices: input_info.pk_indices,
                state_key_to_table_sub_pk_proj,
                state_table: args.state_table,
                watermark_sequence: args.watermark_epoch,
                chunk_size: args.chunk_size,
                cache_policy,
            },
        }
    }

    /// Merge changes by input pk in the given chunk, return a change iterator which guarantees that
    /// each pk only appears once. This method also validates the consistency of the input
    /// chunk.
    ///
    /// TODO(rc): We may want to optimize this by handling changes on the same pk during generating
    /// partition [`Change`]s.
    fn merge_changes_in_chunk<'a>(
        this: &'_ ExecutorInner<S>,
        chunk: &'a StreamChunk,
    ) -> impl Iterator<Item = Record<RowRef<'a>>> {
        let mut changes_merged = BTreeMap::new();
        for (op, row) in chunk.rows() {
            let pk = DefaultOrdered(this.get_input_pk(row));
            match op {
                Op::Insert | Op::UpdateInsert => {
                    if let Some(prev_change) = changes_merged.get_mut(&pk) {
                        match prev_change {
                            Record::Delete { old_row } => {
                                *prev_change = Record::Update {
                                    old_row: *old_row,
                                    new_row: row,
                                };
                            }
                            _ => {
                                consistency_panic!(
                                    ?pk,
                                    "inconsistent changes in input chunk, double-inserting"
                                );
                                if let Record::Update { old_row, .. } = prev_change {
                                    *prev_change = Record::Update {
                                        old_row: *old_row,
                                        new_row: row,
                                    };
                                } else {
                                    *prev_change = Record::Insert { new_row: row };
                                }
                            }
                        }
                    } else {
                        changes_merged.insert(pk, Record::Insert { new_row: row });
                    }
                }
                Op::Delete | Op::UpdateDelete => {
                    if let Some(prev_change) = changes_merged.get_mut(&pk) {
                        match prev_change {
                            Record::Insert { .. } => {
                                changes_merged.remove(&pk);
                            }
                            Record::Update {
                                old_row: real_old_row,
                                ..
                            } => {
                                *prev_change = Record::Delete {
                                    old_row: *real_old_row,
                                };
                            }
                            _ => {
                                consistency_panic!(
                                    ?pk,
                                    "inconsistent changes in input chunk, double-deleting"
                                );
                                *prev_change = Record::Delete { old_row: row };
                            }
                        }
                    } else {
                        changes_merged.insert(pk, Record::Delete { old_row: row });
                    }
                }
            }
        }
        changes_merged.into_values()
    }

    #[try_stream(ok = StreamChunk, error = StreamExecutorError)]
    async fn apply_chunk<'a>(
        this: &'a mut ExecutorInner<S>,
        vars: &'a mut ExecutionVars<S>,
        chunk: StreamChunk,
        metrics: &'a OverWindowMetrics,
    ) {
        // (deduped) partition key => (
        //   significant changes happened in the partition,
        //   no-effect changes happened in the partition,
        // )
        let mut deltas: BTreeMap<DefaultOrdered<OwnedRow>, (PartitionDelta, PartitionDelta)> =
            BTreeMap::new();
        // input pk of update records of which the order key is changed.
        let mut key_change_updated_pks = HashSet::new();

        // Collect changes for each partition.
        for record in Self::merge_changes_in_chunk(this, &chunk) {
            match record {
                Record::Insert { new_row } => {
                    let part_key = this.get_partition_key(new_row).into();
                    let (delta, _) = deltas.entry(part_key).or_default();
                    delta.insert(
                        this.row_to_cache_key(new_row)?,
                        Change::Insert(new_row.into_owned_row()),
                    );
                }
                Record::Delete { old_row } => {
                    let part_key = this.get_partition_key(old_row).into();
                    let (delta, _) = deltas.entry(part_key).or_default();
                    delta.insert(this.row_to_cache_key(old_row)?, Change::Delete);
                }
                Record::Update { old_row, new_row } => {
                    let old_part_key = this.get_partition_key(old_row).into();
                    let new_part_key = this.get_partition_key(new_row).into();
                    let old_state_key = this.row_to_cache_key(old_row)?;
                    let new_state_key = this.row_to_cache_key(new_row)?;
                    if old_part_key == new_part_key && old_state_key == new_state_key {
                        // not a key-change update
                        let (delta, no_effect_delta) = deltas.entry(old_part_key).or_default();
                        if old_row.project(&this.calls.all_arg_indices)
                            == new_row.project(&this.calls.all_arg_indices)
                        {
                            // partition key, order key and arguments are all the same
                            no_effect_delta
                                .insert(old_state_key, Change::Insert(new_row.into_owned_row()));
                        } else {
                            delta.insert(old_state_key, Change::Insert(new_row.into_owned_row()));
                        }
                    } else if old_part_key == new_part_key {
                        // order-change update, split into delete + insert, will be merged after
                        // building changes
                        key_change_updated_pks.insert(this.get_input_pk(old_row));
                        let (delta, _) = deltas.entry(old_part_key).or_default();
                        delta.insert(old_state_key, Change::Delete);
                        delta.insert(new_state_key, Change::Insert(new_row.into_owned_row()));
                    } else {
                        // partition-change update, split into delete + insert
                        // NOTE(rc): Since we append partition key to logical pk, we can't merge the
                        // delete + insert back to update later.
                        // TODO: IMO this behavior is problematic. Deep discussion is needed.
                        let (old_part_delta, _) = deltas.entry(old_part_key).or_default();
                        old_part_delta.insert(old_state_key, Change::Delete);
                        let (new_part_delta, _) = deltas.entry(new_part_key).or_default();
                        new_part_delta
                            .insert(new_state_key, Change::Insert(new_row.into_owned_row()));
                    }
                }
            }
        }

        // `input pk` => `Record`
        let mut key_change_update_buffer: BTreeMap<DefaultOrdered<OwnedRow>, Record<OwnedRow>> =
            BTreeMap::new();
        let mut chunk_builder = StreamChunkBuilder::new(this.chunk_size, this.schema.data_types());

        // Build final changes partition by partition.
        for (part_key, (delta, no_effect_delta)) in deltas {
            vars.stats.cache_lookup += 1;
            if !vars.cached_partitions.contains(&part_key.0) {
                vars.stats.cache_miss += 1;
                vars.cached_partitions
                    .put(part_key.0.clone(), new_empty_partition_cache());
            }
            let mut cache = vars.cached_partitions.get_mut(&part_key).unwrap();

            // First, handle `Update`s that don't affect window function outputs.
            // Be careful that changes in `delta` may (though we believe unlikely) affect the
            // window function outputs of rows in `no_effect_delta`, so before handling `delta`
            // we need to write all changes to state table, range cache and chunk builder.
            for (key, change) in no_effect_delta {
                let new_row = change.into_insert().unwrap(); // new row of an `Update`

                let (old_row, from_cache) = if let Some(old_row) = cache.inner().get(&key).cloned()
                {
                    // Got old row from range cache.
                    (old_row, true)
                } else {
                    // Retrieve old row from state table.
                    let table_pk = (&new_row).project(this.state_table.pk_indices());
                    // The accesses to the state table is ordered by table PK, so ideally we
                    // can leverage the block cache under the hood.
                    if let Some(old_row) = this.state_table.get_row(table_pk).await? {
                        (old_row, false)
                    } else {
                        consistency_panic!(?part_key, ?key, ?new_row, "updating non-existing row");
                        continue;
                    }
                };

                // concatenate old outputs
                let input_len = new_row.len();
                let new_row = OwnedRow::new(
                    new_row
                        .into_iter()
                        .chain(old_row.as_inner().iter().skip(input_len).cloned()) // chain old outputs
                        .collect(),
                );

                // apply & emit the change
                let record = Record::Update {
                    old_row: &old_row,
                    new_row: &new_row,
                };
                if let Some(chunk) = chunk_builder.append_record(record.as_ref()) {
                    yield chunk;
                }
                this.state_table.write_record(record);
                if from_cache {
                    cache.insert(key, new_row);
                }
            }

            let mut partition = OverPartition::new(
                &part_key,
                &mut cache,
                this.cache_policy,
                &this.calls,
                RowConverter {
                    state_key_to_table_sub_pk_proj: &this.state_key_to_table_sub_pk_proj,
                    order_key_indices: &this.order_key_indices,
                    order_key_data_types: &this.order_key_data_types,
                    order_key_order_types: &this.order_key_order_types,
                    input_pk_indices: &this.input_pk_indices,
                },
            );

            if delta.is_empty() {
                continue;
            }

            // Build changes for current partition.
            let (part_changes, accessed_range) =
                partition.build_changes(&this.state_table, delta).await?;

            for (key, record) in part_changes {
                // Build chunk and yield if needed.
                if !key_change_updated_pks.contains(&key.pk) {
                    if let Some(chunk) = chunk_builder.append_record(record.as_ref()) {
                        yield chunk;
                    }
                } else {
                    // For key-change updates, we should wait for both `Delete` and `Insert` changes
                    // and merge them together.
                    let pk = key.pk.clone();
                    let record = record.clone();
                    if let Some(existed) = key_change_update_buffer.remove(&key.pk) {
                        match (existed, record) {
                            (Record::Insert { new_row }, Record::Delete { old_row })
                            | (Record::Delete { old_row }, Record::Insert { new_row }) => {
                                // merge `Delete` and `Insert` into `Update`
                                if let Some(chunk) =
                                    chunk_builder.append_record(Record::Update { old_row, new_row })
                                {
                                    yield chunk;
                                }
                            }
                            (existed, record) => {
                                // when stream is inconsistent, there may be an `Update` of which the old pk does not actually exist
                                consistency_panic!(
                                    ?existed,
                                    ?record,
                                    "other cases should not exist",
                                );

                                key_change_update_buffer.insert(pk, record);
                                if let Some(chunk) = chunk_builder.append_record(existed) {
                                    yield chunk;
                                }
                            }
                        }
                    } else {
                        key_change_update_buffer.insert(pk, record);
                    }
                }

                // Apply the change record.
                partition.write_record(&mut this.state_table, key, record);
            }

            if !key_change_update_buffer.is_empty() {
                consistency_panic!(
                    ?key_change_update_buffer,
                    "key-change update buffer should be empty after processing"
                );
                // if in non-strict mode, we can reach here, but we don't know the `StateKey`,
                // so just ignore the buffer.
            }

            let cache_len = partition.cache_real_len();
            let stats = partition.summarize();
            metrics
                .over_window_range_cache_entry_count
                .set(cache_len as i64);
            metrics
                .over_window_range_cache_lookup_count
                .inc_by(stats.lookup_count);
            metrics
                .over_window_range_cache_left_miss_count
                .inc_by(stats.left_miss_count);
            metrics
                .over_window_range_cache_right_miss_count
                .inc_by(stats.right_miss_count);
            metrics
                .over_window_accessed_entry_count
                .inc_by(stats.accessed_entry_count);
            metrics
                .over_window_compute_count
                .inc_by(stats.compute_count);
            metrics
                .over_window_same_output_count
                .inc_by(stats.same_output_count);

            // Update recently accessed range for later shrinking cache.
            if !this.cache_policy.is_full()
                && let Some(accessed_range) = accessed_range
            {
                match vars.recently_accessed_ranges.entry(part_key) {
                    btree_map::Entry::Vacant(vacant) => {
                        vacant.insert(accessed_range);
                    }
                    btree_map::Entry::Occupied(mut occupied) => {
                        let recently_accessed_range = occupied.get_mut();
                        let min_start = accessed_range
                            .start()
                            .min(recently_accessed_range.start())
                            .clone();
                        let max_end = accessed_range
                            .end()
                            .max(recently_accessed_range.end())
                            .clone();
                        *recently_accessed_range = min_start..=max_end;
                    }
                }
            }
        }

        // Yield remaining changes to downstream.
        if let Some(chunk) = chunk_builder.take() {
            yield chunk;
        }
    }

    #[try_stream(ok = Message, error = StreamExecutorError)]
    async fn executor_inner(self) {
        let OverWindowExecutor {
            input,
            inner: mut this,
        } = self;

        let metrics_info = MetricsInfo::new(
            this.actor_ctx.streaming_metrics.clone(),
            this.state_table.table_id(),
            this.actor_ctx.id,
            "OverWindow",
        );

        let metrics = metrics_info.metrics.new_over_window_metrics(
            this.state_table.table_id(),
            this.actor_ctx.id,
            this.actor_ctx.fragment_id,
        );

        let mut vars = ExecutionVars {
            cached_partitions: ManagedLruCache::unbounded(
                this.watermark_sequence.clone(),
                metrics_info,
            ),
            recently_accessed_ranges: Default::default(),
            stats: Default::default(),
            _phantom: PhantomData::<S>,
        };

        let mut input = input.execute();
        let barrier = expect_first_barrier(&mut input).await?;
        let first_epoch = barrier.epoch;
        yield Message::Barrier(barrier);
        this.state_table.init_epoch(first_epoch).await?;

        #[for_await]
        for msg in input {
            let msg = msg?;
            match msg {
                Message::Watermark(_) => {
                    // TODO(rc): ignore watermark for now, we need to think about watermark for
                    // window functions like `lead` carefully.
                    continue;
                }
                Message::Chunk(chunk) => {
                    #[for_await]
                    for chunk in Self::apply_chunk(&mut this, &mut vars, chunk, &metrics) {
                        yield Message::Chunk(chunk?);
                    }
                    this.state_table.try_flush().await?;
                }
                Message::Barrier(barrier) => {
                    this.state_table.commit(barrier.epoch).await?;
                    vars.cached_partitions.evict();

                    metrics
                        .over_window_cached_entry_count
                        .set(vars.cached_partitions.len() as _);
                    metrics
                        .over_window_cache_lookup_count
                        .inc_by(std::mem::take(&mut vars.stats.cache_lookup));
                    metrics
                        .over_window_cache_miss_count
                        .inc_by(std::mem::take(&mut vars.stats.cache_miss));

                    if let Some(vnode_bitmap) = barrier.as_update_vnode_bitmap(this.actor_ctx.id) {
                        let (_, cache_may_stale) =
                            this.state_table.update_vnode_bitmap(vnode_bitmap);
                        if cache_may_stale {
                            vars.cached_partitions.clear();
                            vars.recently_accessed_ranges.clear();
                        }
                    }

                    if !this.cache_policy.is_full() {
                        for (part_key, recently_accessed_range) in
                            std::mem::take(&mut vars.recently_accessed_ranges)
                        {
                            if let Some(mut range_cache) =
                                vars.cached_partitions.get_mut(&part_key.0)
                            {
                                shrink_partition_cache(
                                    &part_key.0,
                                    &mut range_cache,
                                    this.cache_policy,
                                    recently_accessed_range,
                                );
                            }
                        }
                    }

                    yield Message::Barrier(barrier);
                }
            }
        }
    }
}

/// A converter that helps convert [`StateKey`] to state table sub-PK and convert executor input/output
/// row to [`StateKey`].
///
/// ## Notes
///
/// - [`StateKey`]: Over window range cache key type, containing order key and input pk.
/// - State table sub-PK: State table PK = PK prefix (partition key) + sub-PK (order key + input pk).
/// - Input/output row: Input schema is the prefix of output schema.
///
/// You can see that the content of [`StateKey`] is very similar to state table sub-PK. There's only
/// one difference: the state table PK and sub-PK don't have duplicated columns, while in [`StateKey`],
/// `order_key` and (input)`pk` may contain duplicated columns.
#[derive(Debug, Clone, Copy)]
pub(super) struct RowConverter<'a> {
    state_key_to_table_sub_pk_proj: &'a [usize],
    order_key_indices: &'a [usize],
    order_key_data_types: &'a [DataType],
    order_key_order_types: &'a [OrderType],
    input_pk_indices: &'a [usize],
}

impl<'a> RowConverter<'a> {
    /// Calculate the indices needed for projection from [`StateKey`] to state table sub-PK (used to do
    /// prefixed table scanning). Ideally this function should be called only once by each executor instance.
    /// The projection indices vec is the *selected column indices* in [`StateKey`].`order_key.chain(input_pk)`.
    pub(super) fn calc_state_key_to_table_sub_pk_proj(
        partition_key_indices: &[usize],
        order_key_indices: &[usize],
        input_pk_indices: &'a [usize],
    ) -> Vec<usize> {
        // This process is corresponding to `StreamOverWindow::infer_state_table`.
        let mut projection = Vec::with_capacity(order_key_indices.len() + input_pk_indices.len());
        let mut col_dedup: HashSet<usize> = partition_key_indices.iter().copied().collect();
        for (proj_idx, key_idx) in order_key_indices
            .iter()
            .chain(input_pk_indices.iter())
            .enumerate()
        {
            if col_dedup.insert(*key_idx) {
                projection.push(proj_idx);
            }
        }
        projection.shrink_to_fit();
        projection
    }

    /// Convert [`StateKey`] to sub-PK (table PK without partition key) as [`OwnedRow`].
    pub(super) fn state_key_to_table_sub_pk(
        &self,
        key: &StateKey,
    ) -> StreamExecutorResult<OwnedRow> {
        Ok(memcmp_encoding::decode_row(
            &key.order_key,
            self.order_key_data_types,
            self.order_key_order_types,
        )?
        .chain(key.pk.as_inner())
        .project(self.state_key_to_table_sub_pk_proj)
        .into_owned_row())
    }

    /// Convert full input/output row to [`StateKey`].
    pub(super) fn row_to_state_key(
        &self,
        full_row: impl Row + Copy,
    ) -> StreamExecutorResult<StateKey> {
        Ok(StateKey {
            order_key: memcmp_encoding::encode_row(
                full_row.project(self.order_key_indices),
                self.order_key_order_types,
            )?,
            pk: full_row
                .project(self.input_pk_indices)
                .into_owned_row()
                .into(),
        })
    }
}