risingwave_stream/executor/over_window/over_partition.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
// Copyright 2024 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Types and functions that store or manipulate state/cache inside one single over window
//! partition.
use std::collections::BTreeMap;
use std::marker::PhantomData;
use std::ops::{Bound, RangeInclusive};
use delta_btree_map::{Change, DeltaBTreeMap};
use educe::Educe;
use futures_async_stream::for_await;
use risingwave_common::array::stream_record::Record;
use risingwave_common::row::{OwnedRow, Row, RowExt};
use risingwave_common::session_config::OverWindowCachePolicy as CachePolicy;
use risingwave_common::types::{Datum, Sentinelled};
use risingwave_common::util::iter_util::ZipEqFast;
use risingwave_common_estimate_size::collections::EstimatedBTreeMap;
use risingwave_expr::window_function::{create_window_state, StateKey, WindowStates};
use risingwave_storage::store::PrefetchOptions;
use risingwave_storage::StateStore;
use static_assertions::const_assert;
use super::general::{Calls, RowConverter};
use crate::common::table::state_table::StateTable;
use crate::consistency::{consistency_error, enable_strict_consistency};
use crate::executor::over_window::frame_finder::*;
use crate::executor::StreamExecutorResult;
pub(super) type CacheKey = Sentinelled<StateKey>;
/// Range cache for one over window partition.
/// The cache entries can be:
///
/// - `(Normal)*`
/// - `Smallest, (Normal)*, Largest`
/// - `(Normal)+, Largest`
/// - `Smallest, (Normal)+`
///
/// This means it's impossible to only have one sentinel in the cache without any normal entry,
/// and, each of the two types of sentinel can only appear once. Also, since sentinels are either
/// smallest or largest, they always appear at the beginning or the end of the cache.
pub(super) type PartitionCache = EstimatedBTreeMap<CacheKey, OwnedRow>;
/// Changes happened in one over window partition.
pub(super) type PartitionDelta = BTreeMap<CacheKey, Change<OwnedRow>>;
pub(super) fn new_empty_partition_cache() -> PartitionCache {
let mut cache = PartitionCache::new();
cache.insert(CacheKey::Smallest, OwnedRow::empty());
cache.insert(CacheKey::Largest, OwnedRow::empty());
cache
}
const MAGIC_CACHE_SIZE: usize = 1024;
const MAGIC_JITTER_PREVENTION: usize = MAGIC_CACHE_SIZE / 8;
pub(super) fn shrink_partition_cache(
deduped_part_key: &OwnedRow,
range_cache: &mut PartitionCache,
cache_policy: CachePolicy,
recently_accessed_range: RangeInclusive<StateKey>,
) {
tracing::trace!(
partition=?deduped_part_key,
cache_policy=?cache_policy,
recently_accessed_range=?recently_accessed_range,
"find the range to retain in the range cache"
);
let (start, end) = match cache_policy {
CachePolicy::Full => {
// evict nothing if the policy is to cache full partition
return;
}
CachePolicy::Recent => {
let (sk_start, sk_end) = recently_accessed_range.into_inner();
let (ck_start, ck_end) = (CacheKey::from(sk_start), CacheKey::from(sk_end));
// find the cursor just before `ck_start`
let mut cursor = range_cache.inner().upper_bound(Bound::Excluded(&ck_start));
for _ in 0..MAGIC_JITTER_PREVENTION {
if cursor.prev().is_none() {
// already at the beginning
break;
}
}
let start = cursor
.peek_prev()
.map(|(k, _)| k)
.unwrap_or_else(|| range_cache.first_key_value().unwrap().0)
.clone();
// find the cursor just after `ck_end`
let mut cursor = range_cache.inner().lower_bound(Bound::Excluded(&ck_end));
for _ in 0..MAGIC_JITTER_PREVENTION {
if cursor.next().is_none() {
// already at the end
break;
}
}
let end = cursor
.peek_next()
.map(|(k, _)| k)
.unwrap_or_else(|| range_cache.last_key_value().unwrap().0)
.clone();
(start, end)
}
CachePolicy::RecentFirstN => {
if range_cache.len() <= MAGIC_CACHE_SIZE {
// no need to evict if cache len <= N
return;
} else {
let (sk_start, _sk_end) = recently_accessed_range.into_inner();
let ck_start = CacheKey::from(sk_start);
let mut capacity_remain = MAGIC_CACHE_SIZE; // precision is not important here, code simplicity is the first
const_assert!(MAGIC_JITTER_PREVENTION < MAGIC_CACHE_SIZE);
// find the cursor just before `ck_start`
let cursor_just_before_ck_start =
range_cache.inner().upper_bound(Bound::Excluded(&ck_start));
let mut cursor = cursor_just_before_ck_start.clone();
// go back for at most `MAGIC_JITTER_PREVENTION` entries
for _ in 0..MAGIC_JITTER_PREVENTION {
if cursor.prev().is_none() {
// already at the beginning
break;
}
capacity_remain -= 1;
}
let start = cursor
.peek_prev()
.map(|(k, _)| k)
.unwrap_or_else(|| range_cache.first_key_value().unwrap().0)
.clone();
let mut cursor = cursor_just_before_ck_start;
// go forward for at most `capacity_remain` entries
for _ in 0..capacity_remain {
if cursor.next().is_none() {
// already at the end
break;
}
}
let end = cursor
.peek_next()
.map(|(k, _)| k)
.unwrap_or_else(|| range_cache.last_key_value().unwrap().0)
.clone();
(start, end)
}
}
CachePolicy::RecentLastN => {
if range_cache.len() <= MAGIC_CACHE_SIZE {
// no need to evict if cache len <= N
return;
} else {
let (_sk_start, sk_end) = recently_accessed_range.into_inner();
let ck_end = CacheKey::from(sk_end);
let mut capacity_remain = MAGIC_CACHE_SIZE; // precision is not important here, code simplicity is the first
const_assert!(MAGIC_JITTER_PREVENTION < MAGIC_CACHE_SIZE);
// find the cursor just after `ck_end`
let cursor_just_after_ck_end =
range_cache.inner().lower_bound(Bound::Excluded(&ck_end));
let mut cursor = cursor_just_after_ck_end.clone();
// go forward for at most `MAGIC_JITTER_PREVENTION` entries
for _ in 0..MAGIC_JITTER_PREVENTION {
if cursor.next().is_none() {
// already at the end
break;
}
capacity_remain -= 1;
}
let end = cursor
.peek_next()
.map(|(k, _)| k)
.unwrap_or_else(|| range_cache.last_key_value().unwrap().0)
.clone();
let mut cursor = cursor_just_after_ck_end;
// go back for at most `capacity_remain` entries
for _ in 0..capacity_remain {
if cursor.prev().is_none() {
// already at the beginning
break;
}
}
let start = cursor
.peek_prev()
.map(|(k, _)| k)
.unwrap_or_else(|| range_cache.first_key_value().unwrap().0)
.clone();
(start, end)
}
}
};
tracing::trace!(
partition=?deduped_part_key,
retain_range=?(&start..=&end),
"retain range in the range cache"
);
let (left_removed, right_removed) = range_cache.retain_range(&start..=&end);
if range_cache.is_empty() {
if !left_removed.is_empty() || !right_removed.is_empty() {
range_cache.insert(CacheKey::Smallest, OwnedRow::empty());
range_cache.insert(CacheKey::Largest, OwnedRow::empty());
}
} else {
if !left_removed.is_empty() {
range_cache.insert(CacheKey::Smallest, OwnedRow::empty());
}
if !right_removed.is_empty() {
range_cache.insert(CacheKey::Largest, OwnedRow::empty());
}
}
}
#[derive(Default, Debug)]
pub(super) struct OverPartitionStats {
// stats for range cache operations
pub lookup_count: u64,
pub left_miss_count: u64,
pub right_miss_count: u64,
// stats for window function state computation
pub accessed_entry_count: u64,
pub compute_count: u64,
pub same_output_count: u64,
}
/// [`AffectedRange`] represents a range of keys that are affected by a delta.
/// The [`CacheKey`] fields are keys in the partition range cache + delta, which is
/// represented by [`DeltaBTreeMap`].
///
/// - `first_curr_key` and `last_curr_key` are the current keys of the first and the last
/// windows affected. They are used to pinpoint the bounds where state needs to be updated.
/// - `first_frame_start` and `last_frame_end` are the frame start and end of the first and
/// the last windows affected. They are used to pinpoint the bounds where state needs to be
/// included for computing the new state.
#[derive(Debug, Educe)]
#[educe(Clone, Copy)]
pub(super) struct AffectedRange<'a> {
pub first_frame_start: &'a CacheKey,
pub first_curr_key: &'a CacheKey,
pub last_curr_key: &'a CacheKey,
pub last_frame_end: &'a CacheKey,
}
impl<'a> AffectedRange<'a> {
fn new(
first_frame_start: &'a CacheKey,
first_curr_key: &'a CacheKey,
last_curr_key: &'a CacheKey,
last_frame_end: &'a CacheKey,
) -> Self {
Self {
first_frame_start,
first_curr_key,
last_curr_key,
last_frame_end,
}
}
}
/// A wrapper of [`PartitionCache`] that provides helper methods to manipulate the cache.
/// By putting this type inside `private` module, we can avoid misuse of the internal fields and
/// methods.
pub(super) struct OverPartition<'a, S: StateStore> {
deduped_part_key: &'a OwnedRow,
range_cache: &'a mut PartitionCache,
cache_policy: CachePolicy,
calls: &'a Calls,
row_conv: RowConverter<'a>,
stats: OverPartitionStats,
_phantom: PhantomData<S>,
}
const MAGIC_BATCH_SIZE: usize = 512;
impl<'a, S: StateStore> OverPartition<'a, S> {
#[allow(clippy::too_many_arguments)]
pub fn new(
deduped_part_key: &'a OwnedRow,
cache: &'a mut PartitionCache,
cache_policy: CachePolicy,
calls: &'a Calls,
row_conv: RowConverter<'a>,
) -> Self {
Self {
deduped_part_key,
range_cache: cache,
cache_policy,
calls,
row_conv,
stats: Default::default(),
_phantom: PhantomData,
}
}
/// Get a summary for the execution happened in the [`OverPartition`] in current round.
/// This will consume the [`OverPartition`] value itself.
pub fn summarize(self) -> OverPartitionStats {
// We may extend this function in the future.
self.stats
}
/// Get the number of cached entries ignoring sentinels.
pub fn cache_real_len(&self) -> usize {
let len = self.range_cache.inner().len();
if len <= 1 {
debug_assert!(self
.range_cache
.inner()
.first_key_value()
.map(|(k, _)| k.is_normal())
.unwrap_or(true));
return len;
}
// len >= 2
let cache_inner = self.range_cache.inner();
let sentinels = [
// sentinels only appear at the beginning and/or the end
cache_inner.first_key_value().unwrap().0.is_sentinel(),
cache_inner.last_key_value().unwrap().0.is_sentinel(),
];
len - sentinels.into_iter().filter(|x| *x).count()
}
fn cache_real_first_key(&self) -> Option<&StateKey> {
self.range_cache
.inner()
.iter()
.find(|(k, _)| k.is_normal())
.map(|(k, _)| k.as_normal_expect())
}
fn cache_real_last_key(&self) -> Option<&StateKey> {
self.range_cache
.inner()
.iter()
.rev()
.find(|(k, _)| k.is_normal())
.map(|(k, _)| k.as_normal_expect())
}
fn cache_left_is_sentinel(&self) -> bool {
self.range_cache
.first_key_value()
.map(|(k, _)| k.is_sentinel())
.unwrap_or(false)
}
fn cache_right_is_sentinel(&self) -> bool {
self.range_cache
.last_key_value()
.map(|(k, _)| k.is_sentinel())
.unwrap_or(false)
}
/// Build changes for the partition, with the given `delta`. Necessary maintenance of the range
/// cache will be done during this process, like loading rows from the `table` into the cache.
pub async fn build_changes(
&mut self,
table: &StateTable<S>,
mut delta: PartitionDelta,
) -> StreamExecutorResult<(
BTreeMap<StateKey, Record<OwnedRow>>,
Option<RangeInclusive<StateKey>>,
)> {
let calls = self.calls;
let input_schema_len = table.get_data_types().len() - calls.len();
let numbering_only = calls.numbering_only;
let has_rank = calls.has_rank;
// return values
let mut part_changes = BTreeMap::new();
let mut accessed_range: Option<RangeInclusive<StateKey>> = None;
// stats
let mut accessed_entry_count = 0;
let mut compute_count = 0;
let mut same_output_count = 0;
// Find affected ranges, this also ensures that all rows in the affected ranges are loaded into the cache.
let (part_with_delta, affected_ranges) =
self.find_affected_ranges(table, &mut delta).await?;
let snapshot = part_with_delta.snapshot();
let delta = part_with_delta.delta();
let last_delta_key = delta.last_key_value().map(|(k, _)| k.as_normal_expect());
// Generate delete changes first, because deletes are skipped during iteration over
// `part_with_delta` in the next step.
for (key, change) in delta {
if change.is_delete() {
part_changes.insert(
key.as_normal_expect().clone(),
Record::Delete {
old_row: snapshot.get(key).unwrap().clone(),
},
);
}
}
for AffectedRange {
first_frame_start,
first_curr_key,
last_curr_key,
last_frame_end,
} in affected_ranges
{
assert!(first_frame_start <= first_curr_key);
assert!(first_curr_key <= last_curr_key);
assert!(last_curr_key <= last_frame_end);
assert!(first_frame_start.is_normal());
assert!(first_curr_key.is_normal());
assert!(last_curr_key.is_normal());
assert!(last_frame_end.is_normal());
let last_delta_key = last_delta_key.unwrap();
if let Some(accessed_range) = accessed_range.as_mut() {
let min_start = first_frame_start
.as_normal_expect()
.min(accessed_range.start())
.clone();
let max_end = last_frame_end
.as_normal_expect()
.max(accessed_range.end())
.clone();
*accessed_range = min_start..=max_end;
} else {
accessed_range = Some(
first_frame_start.as_normal_expect().clone()
..=last_frame_end.as_normal_expect().clone(),
);
}
let mut states =
WindowStates::new(calls.iter().map(create_window_state).try_collect()?);
// Populate window states with the affected range of rows.
{
let mut cursor = part_with_delta
.before(first_frame_start)
.expect("first frame start key must exist");
while let Some((key, row)) = cursor.next() {
accessed_entry_count += 1;
for (call, state) in calls.iter().zip_eq_fast(states.iter_mut()) {
// TODO(rc): batch appending
// TODO(rc): append not only the arguments but also the old output for optimization
state.append(
key.as_normal_expect().clone(),
row.project(call.args.val_indices())
.into_owned_row()
.as_inner()
.into(),
);
}
if key == last_frame_end {
break;
}
}
}
// Slide to the first affected key. We can safely pass in `first_curr_key` here
// because it definitely exists in the states by the definition of affected range.
states.just_slide_to(first_curr_key.as_normal_expect())?;
let mut curr_key_cursor = part_with_delta.before(first_curr_key).unwrap();
assert_eq!(
states.curr_key(),
curr_key_cursor
.peek_next()
.map(|(k, _)| k)
.map(CacheKey::as_normal_expect)
);
// Slide and generate changes.
while let Some((key, row)) = curr_key_cursor.next() {
let mut should_stop = false;
let output = states.slide_no_evict_hint()?;
compute_count += 1;
let old_output = &row.as_inner()[input_schema_len..];
if !old_output.is_empty() && old_output == output {
same_output_count += 1;
if numbering_only {
if has_rank {
// It's possible that an `Insert` doesn't affect it's ties but affects
// all the following rows, so we need to check the `order_key`.
if key.as_normal_expect().order_key > last_delta_key.order_key {
// there won't be any more changes after this point, we can stop early
should_stop = true;
}
} else if key.as_normal_expect() >= last_delta_key {
// there won't be any more changes after this point, we can stop early
should_stop = true;
}
}
}
let new_row = OwnedRow::new(
row.as_inner()
.iter()
.take(input_schema_len)
.cloned()
.chain(output)
.collect(),
);
if let Some(old_row) = snapshot.get(key).cloned() {
// update
if old_row != new_row {
part_changes.insert(
key.as_normal_expect().clone(),
Record::Update { old_row, new_row },
);
}
} else {
// insert
part_changes.insert(key.as_normal_expect().clone(), Record::Insert { new_row });
}
if should_stop || key == last_curr_key {
break;
}
}
}
self.stats.accessed_entry_count += accessed_entry_count;
self.stats.compute_count += compute_count;
self.stats.same_output_count += same_output_count;
Ok((part_changes, accessed_range))
}
/// Write a change record to state table and cache.
/// This function must be called after finding affected ranges, which means the change records
/// should never exceed the cached range.
pub fn write_record(
&mut self,
table: &mut StateTable<S>,
key: StateKey,
record: Record<OwnedRow>,
) {
table.write_record(record.as_ref());
match record {
Record::Insert { new_row } | Record::Update { new_row, .. } => {
self.range_cache.insert(CacheKey::from(key), new_row);
}
Record::Delete { .. } => {
self.range_cache.remove(&CacheKey::from(key));
if self.cache_real_len() == 0 && self.range_cache.len() == 1 {
// only one sentinel remains, should insert the other
self.range_cache
.insert(CacheKey::Smallest, OwnedRow::empty());
self.range_cache
.insert(CacheKey::Largest, OwnedRow::empty());
}
}
}
}
/// Find all ranges in the partition that are affected by the given delta.
/// The returned ranges are guaranteed to be sorted and non-overlapping. All keys in the ranges
/// are guaranteed to be cached, which means they should be [`Sentinelled::Normal`]s.
async fn find_affected_ranges<'s, 'delta>(
&'s mut self,
table: &StateTable<S>,
delta: &'delta mut PartitionDelta,
) -> StreamExecutorResult<(
DeltaBTreeMap<'delta, CacheKey, OwnedRow>,
Vec<AffectedRange<'delta>>,
)>
where
'a: 'delta,
's: 'delta,
{
if delta.is_empty() {
return Ok((DeltaBTreeMap::new(self.range_cache.inner(), delta), vec![]));
}
self.ensure_delta_in_cache(table, delta).await?;
let delta = &*delta; // let's make it immutable
let delta_first = delta.first_key_value().unwrap().0.as_normal_expect();
let delta_last = delta.last_key_value().unwrap().0.as_normal_expect();
let range_frame_logical_curr =
calc_logical_curr_for_range_frames(&self.calls.range_frames, delta_first, delta_last);
loop {
// TERMINATEABILITY: `extend_cache_leftward_by_n` and `extend_cache_rightward_by_n` keep
// pushing the cache to the boundary of current partition. In these two methods, when
// any side of boundary is reached, the sentinel key will be removed, so finally
// `Self::find_affected_ranges_readonly` will return `Ok`.
// SAFETY: Here we shortly borrow the range cache and turn the reference into a
// `'delta` one to bypass the borrow checker. This is safe because we only return
// the reference once we don't need to do any further mutation.
let cache_inner = unsafe { &*(self.range_cache.inner() as *const _) };
let part_with_delta = DeltaBTreeMap::new(cache_inner, delta);
self.stats.lookup_count += 1;
let res = self
.find_affected_ranges_readonly(part_with_delta, range_frame_logical_curr.as_ref());
let (need_extend_leftward, need_extend_rightward) = match res {
Ok(ranges) => return Ok((part_with_delta, ranges)),
Err(cache_extend_hint) => cache_extend_hint,
};
if need_extend_leftward {
self.stats.left_miss_count += 1;
tracing::trace!(partition=?self.deduped_part_key, "partition cache left extension triggered");
let left_most = self.cache_real_first_key().unwrap_or(delta_first).clone();
self.extend_cache_leftward_by_n(table, &left_most).await?;
}
if need_extend_rightward {
self.stats.right_miss_count += 1;
tracing::trace!(partition=?self.deduped_part_key, "partition cache right extension triggered");
let right_most = self.cache_real_last_key().unwrap_or(delta_last).clone();
self.extend_cache_rightward_by_n(table, &right_most).await?;
}
tracing::trace!(partition=?self.deduped_part_key, "partition cache extended");
}
}
async fn ensure_delta_in_cache(
&mut self,
table: &StateTable<S>,
delta: &mut PartitionDelta,
) -> StreamExecutorResult<()> {
if delta.is_empty() {
return Ok(());
}
let delta_first = delta.first_key_value().unwrap().0.as_normal_expect();
let delta_last = delta.last_key_value().unwrap().0.as_normal_expect();
if self.cache_policy.is_full() {
// ensure everything is in the cache
self.extend_cache_to_boundary(table).await?;
} else {
// TODO(rc): later we should extend cache using `self.calls.super_rows_frame_bounds` and
// `range_frame_logical_curr` as hints.
// ensure the cache covers all delta (if possible)
self.extend_cache_by_range(table, delta_first..=delta_last)
.await?;
}
if !enable_strict_consistency() {
// in non-strict mode, we should ensure the delta is consistent with the cache
let cache = self.range_cache.inner();
delta.retain(|key, change| match &*change {
Change::Insert(_) => {
// this also includes the case of double-insert and ghost-update,
// but since we already lost the information, let's just ignore it
true
}
Change::Delete => {
// if the key is not in the cache, it's a ghost-delete
let consistent = cache.contains_key(key);
if !consistent {
consistency_error!(?key, "removing a row with non-existing key");
}
consistent
}
});
}
Ok(())
}
/// Try to find affected ranges on immutable range cache + delta. If the algorithm reaches
/// any sentinel node in the cache, which means some entries in the affected range may be
/// in the state table, it returns an `Err((bool, bool))` to notify the caller that the
/// left side or the right side or both sides of the cache should be extended.
///
/// TODO(rc): Currently at most one range will be in the result vector. Ideally we should
/// recognize uncontinuous changes in the delta and find multiple ranges, but that will be
/// too complex for now.
fn find_affected_ranges_readonly<'delta>(
&self,
part_with_delta: DeltaBTreeMap<'delta, CacheKey, OwnedRow>,
range_frame_logical_curr: Option<&(Sentinelled<Datum>, Sentinelled<Datum>)>,
) -> std::result::Result<Vec<AffectedRange<'delta>>, (bool, bool)> {
if part_with_delta.first_key().is_none() {
// nothing is left after applying the delta, meaning all entries are deleted
return Ok(vec![]);
}
let delta_first_key = part_with_delta.delta().first_key_value().unwrap().0;
let delta_last_key = part_with_delta.delta().last_key_value().unwrap().0;
let cache_key_pk_len = delta_first_key.as_normal_expect().pk.len();
if part_with_delta.snapshot().is_empty() {
// all existing keys are inserted in the delta
return Ok(vec![AffectedRange::new(
delta_first_key,
delta_first_key,
delta_last_key,
delta_last_key,
)]);
}
let first_key = part_with_delta.first_key().unwrap();
let last_key = part_with_delta.last_key().unwrap();
let first_curr_key = if self.calls.end_is_unbounded || delta_first_key == first_key {
// If the frame end is unbounded, or, the first key is in delta, then the frame corresponding
// to the first key is always affected.
first_key
} else {
let mut key = find_first_curr_for_rows_frame(
&self.calls.super_rows_frame_bounds,
part_with_delta,
delta_first_key,
);
if let Some((logical_first_curr, _)) = range_frame_logical_curr {
let logical_curr = logical_first_curr.as_normal_expect(); // otherwise should go `end_is_unbounded` branch
let new_key = find_left_for_range_frames(
&self.calls.range_frames,
part_with_delta,
logical_curr,
cache_key_pk_len,
);
key = std::cmp::min(key, new_key);
}
key
};
let last_curr_key = if self.calls.start_is_unbounded || delta_last_key == last_key {
// similar to `first_curr_key`
last_key
} else {
let mut key = find_last_curr_for_rows_frame(
&self.calls.super_rows_frame_bounds,
part_with_delta,
delta_last_key,
);
if let Some((_, logical_last_curr)) = range_frame_logical_curr {
let logical_curr = logical_last_curr.as_normal_expect(); // otherwise should go `start_is_unbounded` branch
let new_key = find_right_for_range_frames(
&self.calls.range_frames,
part_with_delta,
logical_curr,
cache_key_pk_len,
);
key = std::cmp::max(key, new_key);
}
key
};
{
// We quickly return if there's any sentinel in `[first_curr_key, last_curr_key]`,
// just for the sake of simplicity.
let mut need_extend_leftward = false;
let mut need_extend_rightward = false;
for key in [first_curr_key, last_curr_key] {
if key.is_smallest() {
need_extend_leftward = true;
} else if key.is_largest() {
need_extend_rightward = true;
}
}
if need_extend_leftward || need_extend_rightward {
return Err((need_extend_leftward, need_extend_rightward));
}
}
// From now on we definitely have two normal `curr_key`s.
if first_curr_key > last_curr_key {
// Note that we cannot move the this check before the above block, because for example,
// if the range cache contains `[Smallest, 5, Largest]`, and the delta contains only
// `Delete 5`, the frame is `RANGE BETWEEN CURRENT ROW AND CURRENT ROW`, then
// `first_curr_key` will be `Largest`, `last_curr_key` will be `Smallest`, in this case
// there may be some other entries with order value `5` in the table, which should be
// *affected*.
return Ok(vec![]);
}
let range_frame_logical_boundary = calc_logical_boundary_for_range_frames(
&self.calls.range_frames,
first_curr_key.as_normal_expect(),
last_curr_key.as_normal_expect(),
);
let first_frame_start = if self.calls.start_is_unbounded || first_curr_key == first_key {
// If the frame start is unbounded, or, the first curr key is the first key, then the first key
// always need to be included in the affected range.
first_key
} else {
let mut key = find_frame_start_for_rows_frame(
&self.calls.super_rows_frame_bounds,
part_with_delta,
first_curr_key,
);
if let Some((logical_first_start, _)) = range_frame_logical_boundary.as_ref() {
let logical_boundary = logical_first_start.as_normal_expect(); // otherwise should go `end_is_unbounded` branch
let new_key = find_left_for_range_frames(
&self.calls.range_frames,
part_with_delta,
logical_boundary,
cache_key_pk_len,
);
key = std::cmp::min(key, new_key);
}
key
};
assert!(first_frame_start <= first_curr_key);
let last_frame_end = if self.calls.end_is_unbounded || last_curr_key == last_key {
// similar to `first_frame_start`
last_key
} else {
let mut key = find_frame_end_for_rows_frame(
&self.calls.super_rows_frame_bounds,
part_with_delta,
last_curr_key,
);
if let Some((_, logical_last_end)) = range_frame_logical_boundary.as_ref() {
let logical_boundary = logical_last_end.as_normal_expect(); // otherwise should go `end_is_unbounded` branch
let new_key = find_right_for_range_frames(
&self.calls.range_frames,
part_with_delta,
logical_boundary,
cache_key_pk_len,
);
key = std::cmp::max(key, new_key);
}
key
};
assert!(last_frame_end >= last_curr_key);
let mut need_extend_leftward = false;
let mut need_extend_rightward = false;
for key in [
first_curr_key,
last_curr_key,
first_frame_start,
last_frame_end,
] {
if key.is_smallest() {
need_extend_leftward = true;
} else if key.is_largest() {
need_extend_rightward = true;
}
}
if need_extend_leftward || need_extend_rightward {
Err((need_extend_leftward, need_extend_rightward))
} else {
Ok(vec![AffectedRange::new(
first_frame_start,
first_curr_key,
last_curr_key,
last_frame_end,
)])
}
}
async fn extend_cache_to_boundary(
&mut self,
table: &StateTable<S>,
) -> StreamExecutorResult<()> {
if self.cache_real_len() == self.range_cache.len() {
// no sentinel in the cache, meaning we already cached all entries of this partition
return Ok(());
}
tracing::trace!(partition=?self.deduped_part_key, "loading the whole partition into cache");
let mut new_cache = PartitionCache::new(); // shouldn't use `new_empty_partition_cache` here because we don't want sentinels
let sub_range: &(Bound<OwnedRow>, Bound<OwnedRow>) = &(Bound::Unbounded, Bound::Unbounded);
let table_iter = table
.iter_with_prefix(self.deduped_part_key, sub_range, PrefetchOptions::default())
.await?;
#[for_await]
for row in table_iter {
let row: OwnedRow = row?.into_owned_row();
new_cache.insert(self.row_conv.row_to_state_key(&row)?.into(), row);
}
*self.range_cache = new_cache;
Ok(())
}
/// Try to load the given range of entries from table into cache.
/// When the function returns, it's guaranteed that there's no entry in the table that is within
/// the given range but not in the cache.
async fn extend_cache_by_range(
&mut self,
table: &StateTable<S>,
range: RangeInclusive<&StateKey>,
) -> StreamExecutorResult<()> {
if self.cache_real_len() == self.range_cache.len() {
// no sentinel in the cache, meaning we already cached all entries of this partition
return Ok(());
}
assert!(self.range_cache.len() >= 2);
let cache_real_first_key = self.cache_real_first_key();
let cache_real_last_key = self.cache_real_last_key();
if cache_real_first_key.is_some() && *range.end() < cache_real_first_key.unwrap()
|| cache_real_last_key.is_some() && *range.start() > cache_real_last_key.unwrap()
{
// completely not overlapping, for the sake of simplicity, we re-init the cache
tracing::debug!(
partition=?self.deduped_part_key,
cache_first=?cache_real_first_key,
cache_last=?cache_real_last_key,
range=?range,
"modified range is completely non-overlapping with the cached range, re-initializing the cache"
);
*self.range_cache = new_empty_partition_cache();
}
if self.cache_real_len() == 0 {
// no normal entry in the cache, just load the given range
let table_sub_range = (
Bound::Included(self.row_conv.state_key_to_table_sub_pk(range.start())?),
Bound::Included(self.row_conv.state_key_to_table_sub_pk(range.end())?),
);
tracing::debug!(
partition=?self.deduped_part_key,
table_sub_range=?table_sub_range,
"cache is empty, just loading the given range"
);
return self
.extend_cache_by_range_inner(table, table_sub_range)
.await;
}
let cache_real_first_key = self
.cache_real_first_key()
.expect("cache real len is not 0");
if self.cache_left_is_sentinel() && *range.start() < cache_real_first_key {
// extend leftward only if there's smallest sentinel
let table_sub_range = (
Bound::Included(self.row_conv.state_key_to_table_sub_pk(range.start())?),
Bound::Excluded(
self.row_conv
.state_key_to_table_sub_pk(cache_real_first_key)?,
),
);
tracing::trace!(
partition=?self.deduped_part_key,
table_sub_range=?table_sub_range,
"loading the left half of given range"
);
self.extend_cache_by_range_inner(table, table_sub_range)
.await?;
}
let cache_real_last_key = self.cache_real_last_key().expect("cache real len is not 0");
if self.cache_right_is_sentinel() && *range.end() > cache_real_last_key {
// extend rightward only if there's largest sentinel
let table_sub_range = (
Bound::Excluded(
self.row_conv
.state_key_to_table_sub_pk(cache_real_last_key)?,
),
Bound::Included(self.row_conv.state_key_to_table_sub_pk(range.end())?),
);
tracing::trace!(
partition=?self.deduped_part_key,
table_sub_range=?table_sub_range,
"loading the right half of given range"
);
self.extend_cache_by_range_inner(table, table_sub_range)
.await?;
}
// prefetch rows before the start of the range
self.extend_cache_leftward_by_n(table, range.start())
.await?;
// prefetch rows after the end of the range
self.extend_cache_rightward_by_n(table, range.end()).await
}
async fn extend_cache_leftward_by_n(
&mut self,
table: &StateTable<S>,
hint_key: &StateKey,
) -> StreamExecutorResult<()> {
if self.cache_real_len() == self.range_cache.len() {
// no sentinel in the cache, meaning we already cached all entries of this partition
return Ok(());
}
assert!(self.range_cache.len() >= 2);
let left_second = {
let mut iter = self.range_cache.inner().iter();
let left_first = iter.next().unwrap().0;
if left_first.is_normal() {
// the leftside already reaches the beginning of this partition in the table
return Ok(());
}
iter.next().unwrap().0
};
let range_to_exclusive = match left_second {
CacheKey::Normal(smallest_in_cache) => smallest_in_cache,
CacheKey::Largest => hint_key, // no normal entry in the cache
_ => unreachable!(),
}
.clone();
self.extend_cache_leftward_by_n_inner(table, &range_to_exclusive)
.await?;
if self.cache_real_len() == 0 {
// Cache was empty, and extending leftward didn't add anything to the cache, but we
// can't just remove the smallest sentinel, we must also try extending rightward.
self.extend_cache_rightward_by_n_inner(table, hint_key)
.await?;
if self.cache_real_len() == 0 {
// still empty, meaning the table is empty
self.range_cache.remove(&CacheKey::Smallest);
self.range_cache.remove(&CacheKey::Largest);
}
}
Ok(())
}
async fn extend_cache_rightward_by_n(
&mut self,
table: &StateTable<S>,
hint_key: &StateKey,
) -> StreamExecutorResult<()> {
if self.cache_real_len() == self.range_cache.len() {
// no sentinel in the cache, meaning we already cached all entries of this partition
return Ok(());
}
assert!(self.range_cache.len() >= 2);
let right_second = {
let mut iter = self.range_cache.inner().iter();
let right_first = iter.next_back().unwrap().0;
if right_first.is_normal() {
// the rightside already reaches the end of this partition in the table
return Ok(());
}
iter.next_back().unwrap().0
};
let range_from_exclusive = match right_second {
CacheKey::Normal(largest_in_cache) => largest_in_cache,
CacheKey::Smallest => hint_key, // no normal entry in the cache
_ => unreachable!(),
}
.clone();
self.extend_cache_rightward_by_n_inner(table, &range_from_exclusive)
.await?;
if self.cache_real_len() == 0 {
// Cache was empty, and extending rightward didn't add anything to the cache, but we
// can't just remove the smallest sentinel, we must also try extending leftward.
self.extend_cache_leftward_by_n_inner(table, hint_key)
.await?;
if self.cache_real_len() == 0 {
// still empty, meaning the table is empty
self.range_cache.remove(&CacheKey::Smallest);
self.range_cache.remove(&CacheKey::Largest);
}
}
Ok(())
}
async fn extend_cache_by_range_inner(
&mut self,
table: &StateTable<S>,
table_sub_range: (Bound<impl Row>, Bound<impl Row>),
) -> StreamExecutorResult<()> {
let stream = table
.iter_with_prefix(
self.deduped_part_key,
&table_sub_range,
PrefetchOptions::default(),
)
.await?;
#[for_await]
for row in stream {
let row: OwnedRow = row?.into_owned_row();
let key = self.row_conv.row_to_state_key(&row)?;
self.range_cache.insert(CacheKey::from(key), row);
}
Ok(())
}
async fn extend_cache_leftward_by_n_inner(
&mut self,
table: &StateTable<S>,
range_to_exclusive: &StateKey,
) -> StreamExecutorResult<()> {
let mut n_extended = 0usize;
{
let sub_range = (
Bound::<OwnedRow>::Unbounded,
Bound::Excluded(
self.row_conv
.state_key_to_table_sub_pk(range_to_exclusive)?,
),
);
let rev_stream = table
.rev_iter_with_prefix(
self.deduped_part_key,
&sub_range,
PrefetchOptions::default(),
)
.await?;
#[for_await]
for row in rev_stream {
let row: OwnedRow = row?.into_owned_row();
let key = self.row_conv.row_to_state_key(&row)?;
self.range_cache.insert(CacheKey::from(key), row);
n_extended += 1;
if n_extended == MAGIC_BATCH_SIZE {
break;
}
}
}
if n_extended < MAGIC_BATCH_SIZE && self.cache_real_len() > 0 {
// we reached the beginning of this partition in the table
self.range_cache.remove(&CacheKey::Smallest);
}
Ok(())
}
async fn extend_cache_rightward_by_n_inner(
&mut self,
table: &StateTable<S>,
range_from_exclusive: &StateKey,
) -> StreamExecutorResult<()> {
let mut n_extended = 0usize;
{
let sub_range = (
Bound::Excluded(
self.row_conv
.state_key_to_table_sub_pk(range_from_exclusive)?,
),
Bound::<OwnedRow>::Unbounded,
);
let stream = table
.iter_with_prefix(
self.deduped_part_key,
&sub_range,
PrefetchOptions::default(),
)
.await?;
#[for_await]
for row in stream {
let row: OwnedRow = row?.into_owned_row();
let key = self.row_conv.row_to_state_key(&row)?;
self.range_cache.insert(CacheKey::from(key), row);
n_extended += 1;
if n_extended == MAGIC_BATCH_SIZE {
break;
}
}
}
if n_extended < MAGIC_BATCH_SIZE && self.cache_real_len() > 0 {
// we reached the end of this partition in the table
self.range_cache.remove(&CacheKey::Largest);
}
Ok(())
}
}