risingwave_stream/executor/sync_kv_log_store.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
// Copyright 2025 RisingWave Labs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This contains the synced kv log store implementation.
//! It's meant to buffer a large number of records emitted from upstream,
//! to avoid overwhelming the downstream executor.
//!
//! The synced kv log store polls two futures:
//!
//! 1. Upstream: upstream message source
//!
//! It will write stream messages to the log store buffer. e.g. `Message::Barrier`, `Message::Chunk`, ...
//! When writing a stream chunk, if the log store buffer is full, it will:
//! a. Flush the buffer to the log store.
//! b. Convert the stream chunk into a reference (`LogStoreBufferItem::Flushed`)
//! which can read the corresponding chunks in the log store.
//! We will compact adjacent references,
//! so it can read multiple chunks if there's a build up.
//!
//! On receiving barriers, it will:
//! a. Apply truncation to historical data in the logstore.
//! b. Flush and checkpoint the logstore data.
//!
//! 2. State store + buffer + recently flushed chunks: the storage components of the logstore.
//!
//! It will read all historical data from the logstore first. This can be done just by
//! constructing a state store stream, which will read all data until the latest epoch.
//! This is a static snapshot of data.
//! For any subsequently flushed chunks, we will read them via
//! `flushed_chunk_future`. See the next paragraph below.
//!
//! We will next read `flushed_chunk_future` (if there's one pre-existing one), see below for how
//! it's constructed, what it is.
//!
//! Finally we will pop the earliest item in the buffer.
//! - If it's a chunk yield it.
//! - If it's a watermark yield it.
//! - If it's a flushed chunk reference (`LogStoreBufferItem::Flushed`),
//! we will read the corresponding chunks in the log store.
//! This is done by constructing a `flushed_chunk_future` which will read the log store
//! using the `seq_id`.
//! - Barrier,
//! because they are directly propagated from the upstream when polling it.
//!
//! TODO(kwannoel):
//! - [] Add dedicated metrics for sync log store, namespace according to the upstream.
//! - [] Add tests
//! - [] Handle watermark r/w
//! - [] Handle paused stream
use std::collections::VecDeque;
use std::future::pending;
use std::mem::replace;
use std::pin::Pin;
use anyhow::anyhow;
use futures::future::{select, BoxFuture, Either};
use futures::stream::StreamFuture;
use futures::{FutureExt, StreamExt, TryStreamExt};
use futures_async_stream::try_stream;
use risingwave_common::array::StreamChunk;
use risingwave_common::bitmap::Bitmap;
use risingwave_common::catalog::{TableId, TableOption};
use risingwave_common::must_match;
use risingwave_connector::sink::log_store::{ChunkId, LogStoreResult};
use risingwave_storage::store::{
LocalStateStore, NewLocalOptions, OpConsistencyLevel, StateStoreRead,
};
use risingwave_storage::StateStore;
use rw_futures_util::drop_either_future;
use crate::common::log_store_impl::kv_log_store::buffer::LogStoreBufferItem;
use crate::common::log_store_impl::kv_log_store::reader::timeout_auto_rebuild::TimeoutAutoRebuildIter;
use crate::common::log_store_impl::kv_log_store::serde::{
KvLogStoreItem, LogStoreItemMergeStream, LogStoreRowSerde,
};
use crate::common::log_store_impl::kv_log_store::state::{
new_log_store_state, LogStorePostSealCurrentEpoch, LogStoreReadState,
LogStoreStateWriteChunkFuture, LogStoreWriteState,
};
use crate::common::log_store_impl::kv_log_store::{
FlushInfo, KvLogStoreMetrics, ReaderTruncationOffsetType, SeqIdType, FIRST_SEQ_ID,
};
use crate::executor::prelude::*;
use crate::executor::{
Barrier, BoxedMessageStream, Message, StreamExecutorError, StreamExecutorResult,
};
type ReadFlushedChunkFuture = BoxFuture<'static, LogStoreResult<(ChunkId, StreamChunk, u64)>>;
pub struct SyncedKvLogStoreExecutor<S: StateStore> {
actor_context: ActorContextRef,
table_id: TableId,
metrics: KvLogStoreMetrics,
serde: LogStoreRowSerde,
// Upstream
upstream: Executor,
// Log store state
state_store: S,
buffer_max_size: usize,
}
// Stream interface
impl<S: StateStore> SyncedKvLogStoreExecutor<S> {
pub(crate) fn new(
actor_context: ActorContextRef,
table_id: u32,
metrics: KvLogStoreMetrics,
serde: LogStoreRowSerde,
state_store: S,
buffer_max_size: usize,
upstream: Executor,
) -> Self {
Self {
actor_context,
table_id: TableId::new(table_id),
metrics,
serde,
state_store,
upstream,
buffer_max_size,
}
}
}
struct FlushedChunkInfo {
epoch: u64,
start_seq_id: SeqIdType,
end_seq_id: SeqIdType,
flush_info: FlushInfo,
vnode_bitmap: Bitmap,
}
enum WriteFuture<S: LocalStateStore> {
ReceiveFromUpstream {
future: StreamFuture<BoxedMessageStream>,
write_state: LogStoreWriteState<S>,
},
FlushingChunk {
epoch: u64,
start_seq_id: SeqIdType,
end_seq_id: SeqIdType,
future: Pin<Box<LogStoreStateWriteChunkFuture<S>>>,
stream: BoxedMessageStream,
},
Empty,
}
enum WriteFutureEvent {
UpstreamMessageReceived(Message),
ChunkFlushed(FlushedChunkInfo),
}
impl<S: LocalStateStore> WriteFuture<S> {
fn flush_chunk(
stream: BoxedMessageStream,
write_state: LogStoreWriteState<S>,
chunk: StreamChunk,
epoch: u64,
start_seq_id: SeqIdType,
end_seq_id: SeqIdType,
) -> Self {
Self::FlushingChunk {
epoch,
start_seq_id,
end_seq_id,
future: Box::pin(write_state.into_write_chunk_future(
chunk,
epoch,
start_seq_id,
end_seq_id,
)),
stream,
}
}
fn receive_from_upstream(
stream: BoxedMessageStream,
write_state: LogStoreWriteState<S>,
) -> Self {
Self::ReceiveFromUpstream {
future: stream.into_future(),
write_state,
}
}
async fn next_event(
&mut self,
) -> StreamExecutorResult<(BoxedMessageStream, LogStoreWriteState<S>, WriteFutureEvent)> {
match self {
WriteFuture::ReceiveFromUpstream { future, .. } => {
let (opt, stream) = future.await;
must_match!(replace(self, WriteFuture::Empty), WriteFuture::ReceiveFromUpstream { write_state, .. } => {
opt
.ok_or_else(|| anyhow!("end of upstream input").into())
.and_then(|result| result.map(|item| {
(stream, write_state, WriteFutureEvent::UpstreamMessageReceived(item))
}))
})
}
WriteFuture::FlushingChunk { future, .. } => {
let (write_state, result) = future.await;
let result = must_match!(replace(self, WriteFuture::Empty), WriteFuture::FlushingChunk { epoch, start_seq_id, end_seq_id, stream, .. } => {
result.map(|(flush_info, vnode_bitmap)| {
(stream, write_state, WriteFutureEvent::ChunkFlushed(FlushedChunkInfo {
epoch,
start_seq_id,
end_seq_id,
flush_info,
vnode_bitmap,
}))
})
});
result.map_err(Into::into)
}
WriteFuture::Empty => {
unreachable!("should not be polled after ready")
}
}
}
}
// Stream interface
impl<S: StateStore> SyncedKvLogStoreExecutor<S> {
#[try_stream(ok = Message, error = StreamExecutorError)]
pub async fn execute_inner(self) {
let mut input = self.upstream.execute();
// init first epoch + local state store
let first_barrier = expect_first_barrier(&mut input).await?;
let first_write_epoch = first_barrier.epoch;
yield Message::Barrier(first_barrier.clone());
let local_state_store = self
.state_store
.new_local(NewLocalOptions {
table_id: self.table_id,
op_consistency_level: OpConsistencyLevel::Inconsistent,
table_option: TableOption {
retention_seconds: None,
},
is_replicated: false,
vnodes: self.serde.vnodes().clone(),
})
.await;
let (mut read_state, mut initial_write_state) =
new_log_store_state(self.table_id, local_state_store, self.serde);
initial_write_state.init(first_write_epoch).await?;
let mut initial_write_epoch = first_write_epoch;
// We only recreate the consume stream when:
// 1. On bootstrap
// 2. On vnode update
'recreate_consume_stream: loop {
let mut seq_id = FIRST_SEQ_ID;
let mut truncation_offset = None;
let mut buffer = SyncedLogStoreBuffer {
buffer: VecDeque::new(),
max_size: self.buffer_max_size,
next_chunk_id: 0,
metrics: self.metrics.clone(),
};
let mut read_future = ReadFuture::ReadingPersistedStream(
read_state
.read_persisted_log_store(&self.metrics, initial_write_epoch.prev, None)
.await?,
);
let mut write_future = WriteFuture::receive_from_upstream(input, initial_write_state);
loop {
let select_result = {
let read_future =
read_future.next_chunk(&read_state, &mut buffer, &self.metrics);
pin_mut!(read_future);
let write_future = write_future.next_event();
pin_mut!(write_future);
let output = select(write_future, read_future).await;
drop_either_future(output)
};
match select_result {
Either::Left(result) => {
// drop the future to ensure that the future must be reset later
drop(write_future);
let (stream, mut write_state, either) = result?;
match either {
WriteFutureEvent::UpstreamMessageReceived(msg) => {
match msg {
Message::Barrier(barrier) => {
let write_state_post_write_barrier = Self::write_barrier(
&mut write_state,
barrier.clone(),
&self.metrics,
truncation_offset,
&mut buffer,
)
.await?;
seq_id = FIRST_SEQ_ID;
let update_vnode_bitmap =
barrier.as_update_vnode_bitmap(self.actor_context.id);
let barrier_epoch = barrier.epoch;
yield Message::Barrier(barrier);
write_state_post_write_barrier
.post_yield_barrier(update_vnode_bitmap.clone());
if let Some(vnode_bitmap) = update_vnode_bitmap {
// Apply Vnode Update
read_state.update_vnode_bitmap(vnode_bitmap);
initial_write_epoch = barrier_epoch;
input = stream;
initial_write_state = write_state;
continue 'recreate_consume_stream;
} else {
write_future = WriteFuture::receive_from_upstream(
stream,
write_state,
);
}
}
Message::Chunk(chunk) => {
let start_seq_id = seq_id;
seq_id += chunk.cardinality() as SeqIdType;
let end_seq_id = seq_id - 1;
let epoch = write_state.epoch().curr;
if let Some(chunk_to_flush) = buffer.add_or_flush_chunk(
start_seq_id,
end_seq_id,
chunk,
epoch,
) {
write_future = WriteFuture::flush_chunk(
stream,
write_state,
chunk_to_flush,
epoch,
start_seq_id,
end_seq_id,
);
} else {
write_future = WriteFuture::receive_from_upstream(
stream,
write_state,
);
}
}
// FIXME(kwannoel): This should truncate the logstore,
// it will not bypass like barrier.
Message::Watermark(_watermark) => {
write_future =
WriteFuture::receive_from_upstream(stream, write_state);
}
}
}
WriteFutureEvent::ChunkFlushed(FlushedChunkInfo {
start_seq_id,
end_seq_id,
epoch,
flush_info,
vnode_bitmap,
}) => {
buffer.add_flushed_item_to_buffer(
start_seq_id,
end_seq_id,
vnode_bitmap,
epoch,
);
flush_info.report(&self.metrics);
write_future =
WriteFuture::receive_from_upstream(stream, write_state);
}
}
}
Either::Right(result) => {
let (chunk, new_truncate_offset) = result?;
if let Some(new_truncate_offset) = new_truncate_offset {
truncation_offset = Some(new_truncate_offset);
}
yield Message::Chunk(chunk);
}
}
}
}
}
}
enum ReadFuture<S: StateStoreRead> {
ReadingPersistedStream(Pin<Box<LogStoreItemMergeStream<TimeoutAutoRebuildIter<S>>>>),
ReadingFlushedChunk {
future: ReadFlushedChunkFuture,
truncate_offset: ReaderTruncationOffsetType,
},
Idle,
}
// Read methods
impl<S: StateStoreRead> ReadFuture<S> {
// TODO: should change to always return a truncate offset to ensure that each stream chunk has a truncate offset
async fn next_chunk(
&mut self,
read_state: &LogStoreReadState<S>,
buffer: &mut SyncedLogStoreBuffer,
metrics: &KvLogStoreMetrics,
) -> StreamExecutorResult<(StreamChunk, Option<ReaderTruncationOffsetType>)> {
match self {
ReadFuture::ReadingPersistedStream(stream) => {
while let Some((_, item)) = stream.try_next().await? {
match item {
KvLogStoreItem::Barrier { .. } => {
continue;
}
KvLogStoreItem::StreamChunk(chunk) => {
// TODO: should have truncate offset when consuming historical data
return Ok((chunk, None));
}
}
}
*self = ReadFuture::Idle;
}
ReadFuture::ReadingFlushedChunk { .. } | ReadFuture::Idle => {}
}
match self {
ReadFuture::ReadingPersistedStream(_) => {
unreachable!("must have finished read persisted stream when reaching here")
}
ReadFuture::ReadingFlushedChunk { .. } => {}
ReadFuture::Idle => loop {
let Some((item_epoch, item)) = buffer.pop_front() else {
return pending().await;
};
match item {
LogStoreBufferItem::StreamChunk {
chunk, end_seq_id, ..
} => {
return Ok((chunk, Some((item_epoch, Some(end_seq_id)))));
}
LogStoreBufferItem::Flushed {
vnode_bitmap,
start_seq_id,
end_seq_id,
chunk_id,
} => {
let truncate_offset = (item_epoch, Some(end_seq_id));
let read_metrics = metrics.flushed_buffer_read_metrics.clone();
let future = read_state
.read_flushed_chunk(
vnode_bitmap,
chunk_id,
start_seq_id,
end_seq_id,
item_epoch,
read_metrics,
)
.boxed();
*self = ReadFuture::ReadingFlushedChunk {
future,
truncate_offset,
};
break;
}
LogStoreBufferItem::Barrier { .. } => {
continue;
}
LogStoreBufferItem::UpdateVnodes(_) => {
unreachable!("UpdateVnodes should not be in buffer")
}
}
},
}
let (future, truncate_offset) = match self {
ReadFuture::ReadingPersistedStream(_) | ReadFuture::Idle => {
unreachable!("should be at ReadingFlushedChunk")
}
ReadFuture::ReadingFlushedChunk {
future,
truncate_offset,
} => (future, *truncate_offset),
};
let (_, chunk, _) = future.await?;
*self = ReadFuture::Idle;
Ok((chunk, Some(truncate_offset)))
}
}
// Write methods
impl<S: StateStore> SyncedKvLogStoreExecutor<S> {
async fn write_barrier<'a>(
write_state: &'a mut LogStoreWriteState<S::Local>,
barrier: Barrier,
metrics: &KvLogStoreMetrics,
truncation_offset: Option<ReaderTruncationOffsetType>,
buffer: &mut SyncedLogStoreBuffer,
) -> StreamExecutorResult<LogStorePostSealCurrentEpoch<'a, S::Local>> {
let epoch = barrier.epoch.prev;
let mut writer = write_state.start_writer(false);
// FIXME(kwannoel): Handle paused stream.
writer.write_barrier(epoch, barrier.is_checkpoint())?;
// FIXME(kwannoel): Flush all unflushed chunks
// As an optimization we can also change it into flushed items instead.
// This will reduce memory consumption of logstore.
// TODO: may stop the for loop when seeing any of flushed item to avoid always iterating the whole buffer
for (epoch, item) in &mut buffer.buffer {
match item {
LogStoreBufferItem::StreamChunk {
chunk,
start_seq_id,
end_seq_id,
flushed,
..
} => {
if !*flushed {
writer.write_chunk(chunk, *epoch, *start_seq_id, *end_seq_id)?;
*flushed = true;
}
}
LogStoreBufferItem::Flushed { .. }
| LogStoreBufferItem::Barrier { .. }
| LogStoreBufferItem::UpdateVnodes(_) => {}
}
}
let (flush_info, _) = writer.finish().await?;
flush_info.report(metrics);
// Apply truncation
let post_seal = write_state.seal_current_epoch(barrier.epoch.curr, truncation_offset);
// Add to buffer
buffer.buffer.push_back((
epoch,
LogStoreBufferItem::Barrier {
is_checkpoint: barrier.is_checkpoint(),
next_epoch: barrier.epoch.curr,
},
));
buffer.next_chunk_id = 0;
buffer.update_unconsumed_buffer_metrics();
Ok(post_seal)
}
}
struct SyncedLogStoreBuffer {
buffer: VecDeque<(u64, LogStoreBufferItem)>,
max_size: usize,
next_chunk_id: ChunkId,
metrics: KvLogStoreMetrics,
}
impl SyncedLogStoreBuffer {
fn add_or_flush_chunk(
&mut self,
start_seq_id: SeqIdType,
end_seq_id: SeqIdType,
chunk: StreamChunk,
epoch: u64,
) -> Option<StreamChunk> {
let current_size = self.buffer.len();
let chunk_size = chunk.cardinality();
let should_flush_chunk = current_size + chunk_size >= self.max_size;
if should_flush_chunk {
Some(chunk)
} else {
self.add_chunk_to_buffer(chunk, start_seq_id, end_seq_id, epoch);
None
}
}
/// After flushing a chunk, we will preserve a `FlushedItem` inside the buffer.
/// This doesn't contain any data, but it contains the metadata to read the flushed chunk.
fn add_flushed_item_to_buffer(
&mut self,
start_seq_id: SeqIdType,
end_seq_id: SeqIdType,
new_vnode_bitmap: Bitmap,
epoch: u64,
) {
if let Some((
item_epoch,
LogStoreBufferItem::Flushed {
end_seq_id: prev_end_seq_id,
vnode_bitmap,
..
},
)) = self.buffer.back_mut()
{
assert!(
*prev_end_seq_id < start_seq_id,
"prev end_seq_id {} should be smaller than current start_seq_id {}",
end_seq_id,
start_seq_id
);
assert_eq!(
epoch, *item_epoch,
"epoch of newly added flushed item must be the same as the last flushed item"
);
*prev_end_seq_id = end_seq_id;
*vnode_bitmap |= new_vnode_bitmap;
} else {
let chunk_id = self.next_chunk_id;
self.next_chunk_id += 1;
self.buffer.push_back((
epoch,
LogStoreBufferItem::Flushed {
start_seq_id,
end_seq_id,
vnode_bitmap: new_vnode_bitmap,
chunk_id,
},
));
tracing::trace!("Adding flushed item to buffer: start_seq_id: {start_seq_id}, end_seq_id: {end_seq_id}, chunk_id: {chunk_id}");
}
// FIXME(kwannoel): Seems these metrics are updated _after_ the flush info is reported.
self.update_unconsumed_buffer_metrics();
}
fn add_chunk_to_buffer(
&mut self,
chunk: StreamChunk,
start_seq_id: SeqIdType,
end_seq_id: SeqIdType,
epoch: u64,
) {
let chunk_id = self.next_chunk_id;
self.next_chunk_id += 1;
self.buffer.push_back((
epoch,
LogStoreBufferItem::StreamChunk {
chunk,
start_seq_id,
end_seq_id,
flushed: false,
chunk_id,
},
));
self.update_unconsumed_buffer_metrics();
}
fn pop_front(&mut self) -> Option<(u64, LogStoreBufferItem)> {
self.buffer.pop_front()
}
fn update_unconsumed_buffer_metrics(&self) {
let mut epoch_count = 0;
let mut row_count = 0;
for (_, item) in &self.buffer {
match item {
LogStoreBufferItem::StreamChunk { chunk, .. } => {
row_count += chunk.cardinality();
}
LogStoreBufferItem::Flushed {
start_seq_id,
end_seq_id,
..
} => {
row_count += (end_seq_id - start_seq_id) as usize;
}
LogStoreBufferItem::Barrier { .. } => {
epoch_count += 1;
}
LogStoreBufferItem::UpdateVnodes(_) => {}
}
}
self.metrics.buffer_unconsumed_epoch_count.set(epoch_count);
self.metrics.buffer_unconsumed_row_count.set(row_count as _);
self.metrics
.buffer_unconsumed_item_count
.set(self.buffer.len() as _);
self.metrics.buffer_unconsumed_min_epoch.set(
self.buffer
.front()
.map(|(epoch, _)| *epoch)
.unwrap_or_default() as _,
);
}
}
impl<S> Execute for SyncedKvLogStoreExecutor<S>
where
S: StateStore,
{
fn execute(self: Box<Self>) -> BoxedMessageStream {
self.execute_inner().boxed()
}
}
#[cfg(test)]
mod tests {
use itertools::Itertools;
use pretty_assertions::assert_eq;
use risingwave_common::catalog::Field;
use risingwave_common::hash::VirtualNode;
use risingwave_common::test_prelude::*;
use risingwave_common::util::epoch::test_epoch;
use risingwave_storage::memory::MemoryStateStore;
use super::*;
use crate::common::log_store_impl::kv_log_store::test_utils::{
check_stream_chunk_eq, gen_test_log_store_table, test_payload_schema,
};
use crate::common::log_store_impl::kv_log_store::KV_LOG_STORE_V2_INFO;
use crate::executor::test_utils::MockSource;
fn init_logger() {
let _ = tracing_subscriber::fmt()
.with_env_filter(tracing_subscriber::EnvFilter::from_default_env())
.with_ansi(false)
.try_init();
}
// test read/write buffer
#[tokio::test]
async fn test_read_write_buffer() {
init_logger();
let schema = Schema {
fields: vec![
Field::unnamed(DataType::Int64),
Field::unnamed(DataType::Int64),
],
};
let pk_indices = vec![0];
let (mut tx, source) = MockSource::channel();
let source = source.into_executor(schema.clone(), pk_indices.clone());
let vnodes = Some(Arc::new(Bitmap::ones(VirtualNode::COUNT_FOR_TEST)));
let pk_info = &KV_LOG_STORE_V2_INFO;
let table = gen_test_log_store_table(pk_info);
let log_store_executor = SyncedKvLogStoreExecutor::new(
ActorContext::for_test(123),
table.id,
KvLogStoreMetrics::for_test(),
LogStoreRowSerde::new(&table, vnodes, pk_info),
MemoryStateStore::new(),
10,
source,
)
.boxed();
// Init
tx.push_barrier(test_epoch(1), false);
let chunk_1 = StreamChunk::from_pretty(
" I I
+ 5 10
+ 6 10
+ 8 10
+ 9 10
+ 10 11",
);
let chunk_2 = StreamChunk::from_pretty(
" I I
- 5 10
- 6 10
- 8 10
U- 9 10
U+ 10 11",
);
tx.push_chunk(chunk_1.clone());
tx.push_chunk(chunk_2.clone());
let mut stream = log_store_executor.execute();
match stream.next().await {
Some(Ok(Message::Barrier(barrier))) => {
assert_eq!(barrier.epoch.curr, test_epoch(1));
}
other => panic!("Expected a barrier message, got {:?}", other),
}
match stream.next().await {
Some(Ok(Message::Chunk(chunk))) => {
assert_eq!(chunk, chunk_1);
}
other => panic!("Expected a chunk message, got {:?}", other),
}
match stream.next().await {
Some(Ok(Message::Chunk(chunk))) => {
assert_eq!(chunk, chunk_2);
}
other => panic!("Expected a chunk message, got {:?}", other),
}
tx.push_barrier(test_epoch(2), false);
match stream.next().await {
Some(Ok(Message::Barrier(barrier))) => {
assert_eq!(barrier.epoch.curr, test_epoch(2));
}
other => panic!("Expected a barrier message, got {:?}", other),
}
}
// test barrier persisted read
//
// sequence of events (earliest -> latest):
// barrier(1) -> chunk(1) -> chunk(2) -> poll(3) items -> barrier(2) -> poll(1) item
// * poll just means we read from the executor stream.
#[tokio::test]
async fn test_barrier_persisted_read() {
init_logger();
let schema = Schema {
fields: vec![
Field::unnamed(DataType::Int64),
Field::unnamed(DataType::Int64),
],
};
let pk_indices = vec![0];
let (mut tx, source) = MockSource::channel();
let source = source.into_executor(schema.clone(), pk_indices.clone());
let vnodes = Some(Arc::new(Bitmap::ones(VirtualNode::COUNT_FOR_TEST)));
let pk_info = &KV_LOG_STORE_V2_INFO;
let table = gen_test_log_store_table(pk_info);
let log_store_executor = SyncedKvLogStoreExecutor::new(
ActorContext::for_test(123),
table.id,
KvLogStoreMetrics::for_test(),
LogStoreRowSerde::new(&table, vnodes, pk_info),
MemoryStateStore::new(),
10,
source,
)
.boxed();
// Init
tx.push_barrier(test_epoch(1), false);
let chunk_1 = StreamChunk::from_pretty(
" I I
+ 5 10
+ 6 10
+ 8 10
+ 9 10
+ 10 11",
);
let chunk_2 = StreamChunk::from_pretty(
" I I
- 5 10
- 6 10
- 8 10
U- 10 11
U+ 10 10",
);
tx.push_chunk(chunk_1.clone());
tx.push_chunk(chunk_2.clone());
tx.push_barrier(test_epoch(2), false);
let mut stream = log_store_executor.execute();
match stream.next().await {
Some(Ok(Message::Barrier(barrier))) => {
assert_eq!(barrier.epoch.curr, test_epoch(1));
}
other => panic!("Expected a barrier message, got {:?}", other),
}
match stream.next().await {
Some(Ok(Message::Barrier(barrier))) => {
assert_eq!(barrier.epoch.curr, test_epoch(2));
}
other => panic!("Expected a barrier message, got {:?}", other),
}
match stream.next().await {
Some(Ok(Message::Chunk(chunk))) => {
assert_eq!(chunk, chunk_1);
}
other => panic!("Expected a chunk message, got {:?}", other),
}
match stream.next().await {
Some(Ok(Message::Chunk(chunk))) => {
assert_eq!(chunk, chunk_2);
}
other => panic!("Expected a chunk message, got {:?}", other),
}
}
// When we hit buffer max_chunk, we only store placeholder `FlushedItem`.
// So we just let capacity = 0, and we will always flush incoming chunks to state store.
#[tokio::test]
async fn test_max_chunk_persisted_read() {
init_logger();
let pk_info = &KV_LOG_STORE_V2_INFO;
let column_descs = test_payload_schema(pk_info);
let fields = column_descs
.into_iter()
.map(|desc| Field::new(desc.name.clone(), desc.data_type.clone()))
.collect_vec();
let schema = Schema { fields };
let pk_indices = vec![0];
let (mut tx, source) = MockSource::channel();
let source = source.into_executor(schema.clone(), pk_indices.clone());
let vnodes = Some(Arc::new(Bitmap::ones(VirtualNode::COUNT_FOR_TEST)));
let table = gen_test_log_store_table(pk_info);
let log_store_executor = SyncedKvLogStoreExecutor::new(
ActorContext::for_test(123),
table.id,
KvLogStoreMetrics::for_test(),
LogStoreRowSerde::new(&table, vnodes, pk_info),
MemoryStateStore::new(),
0,
source,
)
.boxed();
// Init
tx.push_barrier(test_epoch(1), false);
let chunk_1 = StreamChunk::from_pretty(
" I T
+ 5 10
+ 6 10
+ 8 10
+ 9 10
+ 10 11",
);
let chunk_2 = StreamChunk::from_pretty(
" I T
- 5 10
- 6 10
- 8 10
U- 10 11
U+ 10 10",
);
tx.push_chunk(chunk_1.clone());
tx.push_chunk(chunk_2.clone());
tx.push_barrier(test_epoch(2), false);
let mut stream = log_store_executor.execute();
for i in 1..=2 {
match stream.next().await {
Some(Ok(Message::Barrier(barrier))) => {
assert_eq!(barrier.epoch.curr, test_epoch(i));
}
other => panic!("Expected a barrier message, got {:?}", other),
}
}
match stream.next().await {
Some(Ok(Message::Chunk(actual))) => {
let expected = StreamChunk::from_pretty(
" I T
+ 5 10
+ 6 10
+ 8 10
+ 9 10
+ 10 11
- 5 10
- 6 10
- 8 10
U- 10 11
U+ 10 10",
);
assert!(
check_stream_chunk_eq(&actual, &expected),
"Expected: {:#?}, got: {:#?}",
expected,
actual
);
}
other => panic!("Expected a chunk message, got {:?}", other),
}
}
}