risingwave_stream::executor::prelude

Struct Arc

1.0.0 · source
pub struct Arc<T, A = Global>
where A: Allocator, T: ?Sized,
{ ptr: NonNull<ArcInner<T>>, phantom: PhantomData<ArcInner<T>>, alloc: A, }
Expand description

A thread-safe reference-counting pointer. ‘Arc’ stands for ‘Atomically Reference Counted’.

The type Arc<T> provides shared ownership of a value of type T, allocated in the heap. Invoking clone on Arc produces a new Arc instance, which points to the same allocation on the heap as the source Arc, while increasing a reference count. When the last Arc pointer to a given allocation is destroyed, the value stored in that allocation (often referred to as “inner value”) is also dropped.

Shared references in Rust disallow mutation by default, and Arc is no exception: you cannot generally obtain a mutable reference to something inside an Arc. If you need to mutate through an Arc, use Mutex, RwLock, or one of the Atomic types.

Note: This type is only available on platforms that support atomic loads and stores of pointers, which includes all platforms that support the std crate but not all those which only support alloc. This may be detected at compile time using #[cfg(target_has_atomic = "ptr")].

§Thread Safety

Unlike Rc<T>, Arc<T> uses atomic operations for its reference counting. This means that it is thread-safe. The disadvantage is that atomic operations are more expensive than ordinary memory accesses. If you are not sharing reference-counted allocations between threads, consider using Rc<T> for lower overhead. Rc<T> is a safe default, because the compiler will catch any attempt to send an Rc<T> between threads. However, a library might choose Arc<T> in order to give library consumers more flexibility.

Arc<T> will implement Send and Sync as long as the T implements Send and Sync. Why can’t you put a non-thread-safe type T in an Arc<T> to make it thread-safe? This may be a bit counter-intuitive at first: after all, isn’t the point of Arc<T> thread safety? The key is this: Arc<T> makes it thread safe to have multiple ownership of the same data, but it doesn’t add thread safety to its data. Consider Arc<RefCell<T>>. RefCell<T> isn’t Sync, and if Arc<T> was always Send, Arc<RefCell<T>> would be as well. But then we’d have a problem: RefCell<T> is not thread safe; it keeps track of the borrowing count using non-atomic operations.

In the end, this means that you may need to pair Arc<T> with some sort of std::sync type, usually Mutex<T>.

§Breaking cycles with Weak

The downgrade method can be used to create a non-owning Weak pointer. A Weak pointer can be upgraded to an Arc, but this will return None if the value stored in the allocation has already been dropped. In other words, Weak pointers do not keep the value inside the allocation alive; however, they do keep the allocation (the backing store for the value) alive.

A cycle between Arc pointers will never be deallocated. For this reason, Weak is used to break cycles. For example, a tree could have strong Arc pointers from parent nodes to children, and Weak pointers from children back to their parents.

§Cloning references

Creating a new reference from an existing reference-counted pointer is done using the Clone trait implemented for Arc<T> and Weak<T>.

use std::sync::Arc;
let foo = Arc::new(vec![1.0, 2.0, 3.0]);
// The two syntaxes below are equivalent.
let a = foo.clone();
let b = Arc::clone(&foo);
// a, b, and foo are all Arcs that point to the same memory location

§Deref behavior

Arc<T> automatically dereferences to T (via the Deref trait), so you can call T’s methods on a value of type Arc<T>. To avoid name clashes with T’s methods, the methods of Arc<T> itself are associated functions, called using fully qualified syntax:

use std::sync::Arc;

let my_arc = Arc::new(());
let my_weak = Arc::downgrade(&my_arc);

Arc<T>’s implementations of traits like Clone may also be called using fully qualified syntax. Some people prefer to use fully qualified syntax, while others prefer using method-call syntax.

use std::sync::Arc;

let arc = Arc::new(());
// Method-call syntax
let arc2 = arc.clone();
// Fully qualified syntax
let arc3 = Arc::clone(&arc);

Weak<T> does not auto-dereference to T, because the inner value may have already been dropped.

§Examples

Sharing some immutable data between threads:

use std::sync::Arc;
use std::thread;

let five = Arc::new(5);

for _ in 0..10 {
    let five = Arc::clone(&five);

    thread::spawn(move || {
        println!("{five:?}");
    });
}

Sharing a mutable AtomicUsize:

use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::thread;

let val = Arc::new(AtomicUsize::new(5));

for _ in 0..10 {
    let val = Arc::clone(&val);

    thread::spawn(move || {
        let v = val.fetch_add(1, Ordering::Relaxed);
        println!("{v:?}");
    });
}

See the rc documentation for more examples of reference counting in general.

Fields§

§ptr: NonNull<ArcInner<T>>§phantom: PhantomData<ArcInner<T>>§alloc: A

Implementations§

source§

impl<T> Arc<T>

1.0.0 · source

pub fn new(data: T) -> Arc<T>

Constructs a new Arc<T>.

§Examples
use std::sync::Arc;

let five = Arc::new(5);
1.60.0 · source

pub fn new_cyclic<F>(data_fn: F) -> Arc<T>
where F: FnOnce(&Weak<T>) -> T,

Constructs a new Arc<T> while giving you a Weak<T> to the allocation, to allow you to construct a T which holds a weak pointer to itself.

Generally, a structure circularly referencing itself, either directly or indirectly, should not hold a strong reference to itself to prevent a memory leak. Using this function, you get access to the weak pointer during the initialization of T, before the Arc<T> is created, such that you can clone and store it inside the T.

new_cyclic first allocates the managed allocation for the Arc<T>, then calls your closure, giving it a Weak<T> to this allocation, and only afterwards completes the construction of the Arc<T> by placing the T returned from your closure into the allocation.

Since the new Arc<T> is not fully-constructed until Arc<T>::new_cyclic returns, calling upgrade on the weak reference inside your closure will fail and result in a None value.

§Panics

If data_fn panics, the panic is propagated to the caller, and the temporary Weak<T> is dropped normally.

§Example
use std::sync::{Arc, Weak};

struct Gadget {
    me: Weak<Gadget>,
}

impl Gadget {
    /// Constructs a reference counted Gadget.
    fn new() -> Arc<Self> {
        // `me` is a `Weak<Gadget>` pointing at the new allocation of the
        // `Arc` we're constructing.
        Arc::new_cyclic(|me| {
            // Create the actual struct here.
            Gadget { me: me.clone() }
        })
    }

    /// Returns a reference counted pointer to Self.
    fn me(&self) -> Arc<Self> {
        self.me.upgrade().unwrap()
    }
}
1.82.0 · source

pub fn new_uninit() -> Arc<MaybeUninit<T>>

Constructs a new Arc with uninitialized contents.

§Examples
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut five = Arc::<u32>::new_uninit();

// Deferred initialization:
Arc::get_mut(&mut five).unwrap().write(5);

let five = unsafe { five.assume_init() };

assert_eq!(*five, 5)
source

pub fn new_zeroed() -> Arc<MaybeUninit<T>>

🔬This is a nightly-only experimental API. (new_zeroed_alloc)

Constructs a new Arc with uninitialized contents, with the memory being filled with 0 bytes.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(new_zeroed_alloc)]

use std::sync::Arc;

let zero = Arc::<u32>::new_zeroed();
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0)
1.33.0 · source

pub fn pin(data: T) -> Pin<Arc<T>>

Constructs a new Pin<Arc<T>>. If T does not implement Unpin, then data will be pinned in memory and unable to be moved.

source

pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Pin<Arc<T>>, return an error if allocation fails.

source

pub fn try_new(data: T) -> Result<Arc<T>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc<T>, returning an error if allocation fails.

§Examples
#![feature(allocator_api)]
use std::sync::Arc;

let five = Arc::try_new(5)?;
source

pub fn try_new_uninit() -> Result<Arc<MaybeUninit<T>>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc with uninitialized contents, returning an error if allocation fails.

§Examples
#![feature(allocator_api)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut five = Arc::<u32>::try_new_uninit()?;

// Deferred initialization:
Arc::get_mut(&mut five).unwrap().write(5);

let five = unsafe { five.assume_init() };

assert_eq!(*five, 5);
source

pub fn try_new_zeroed() -> Result<Arc<MaybeUninit<T>>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc with uninitialized contents, with the memory being filled with 0 bytes, returning an error if allocation fails.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature( allocator_api)]

use std::sync::Arc;

let zero = Arc::<u32>::try_new_zeroed()?;
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0);
source§

impl<T, A> Arc<T, A>
where A: Allocator,

source

pub fn new_in(data: T, alloc: A) -> Arc<T, A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc<T> in the provided allocator.

§Examples
#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let five = Arc::new_in(5, System);
source

pub fn new_uninit_in(alloc: A) -> Arc<MaybeUninit<T>, A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc with uninitialized contents in the provided allocator.

§Examples
#![feature(get_mut_unchecked)]
#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let mut five = Arc::<u32, _>::new_uninit_in(System);

let five = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5)
source

pub fn new_zeroed_in(alloc: A) -> Arc<MaybeUninit<T>, A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc with uninitialized contents, with the memory being filled with 0 bytes, in the provided allocator.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let zero = Arc::<u32, _>::new_zeroed_in(System);
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0)
source

pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Arc<T, A>
where F: FnOnce(&Weak<T, A>) -> T,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc<T, A> in the given allocator while giving you a Weak<T, A> to the allocation, to allow you to construct a T which holds a weak pointer to itself.

Generally, a structure circularly referencing itself, either directly or indirectly, should not hold a strong reference to itself to prevent a memory leak. Using this function, you get access to the weak pointer during the initialization of T, before the Arc<T, A> is created, such that you can clone and store it inside the T.

new_cyclic_in first allocates the managed allocation for the Arc<T, A>, then calls your closure, giving it a Weak<T, A> to this allocation, and only afterwards completes the construction of the Arc<T, A> by placing the T returned from your closure into the allocation.

Since the new Arc<T, A> is not fully-constructed until Arc<T, A>::new_cyclic_in returns, calling upgrade on the weak reference inside your closure will fail and result in a None value.

§Panics

If data_fn panics, the panic is propagated to the caller, and the temporary Weak<T> is dropped normally.

§Example

See new_cyclic

source

pub fn pin_in(data: T, alloc: A) -> Pin<Arc<T, A>>
where A: 'static,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Pin<Arc<T, A>> in the provided allocator. If T does not implement Unpin, then data will be pinned in memory and unable to be moved.

source

pub fn try_pin_in(data: T, alloc: A) -> Result<Pin<Arc<T, A>>, AllocError>
where A: 'static,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Pin<Arc<T, A>> in the provided allocator, return an error if allocation fails.

source

pub fn try_new_in(data: T, alloc: A) -> Result<Arc<T, A>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc<T, A> in the provided allocator, returning an error if allocation fails.

§Examples
#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let five = Arc::try_new_in(5, System)?;
source

pub fn try_new_uninit_in(alloc: A) -> Result<Arc<MaybeUninit<T>, A>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc with uninitialized contents, in the provided allocator, returning an error if allocation fails.

§Examples
#![feature(allocator_api)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;
use std::alloc::System;

let mut five = Arc::<u32, _>::try_new_uninit_in(System)?;

let five = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5);
source

pub fn try_new_zeroed_in(alloc: A) -> Result<Arc<MaybeUninit<T>, A>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc with uninitialized contents, with the memory being filled with 0 bytes, in the provided allocator, returning an error if allocation fails.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let zero = Arc::<u32, _>::try_new_zeroed_in(System)?;
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0);
1.4.0 · source

pub fn try_unwrap(this: Arc<T, A>) -> Result<T, Arc<T, A>>

Returns the inner value, if the Arc has exactly one strong reference.

Otherwise, an Err is returned with the same Arc that was passed in.

This will succeed even if there are outstanding weak references.

It is strongly recommended to use Arc::into_inner instead if you don’t keep the Arc in the Err case. Immediately dropping the Err-value, as the expression Arc::try_unwrap(this).ok() does, can cause the strong count to drop to zero and the inner value of the Arc to be dropped. For instance, if two threads execute such an expression in parallel, there is a race condition without the possibility of unsafety: The threads could first both check whether they own the last instance in Arc::try_unwrap, determine that they both do not, and then both discard and drop their instance in the call to ok. In this scenario, the value inside the Arc is safely destroyed by exactly one of the threads, but neither thread will ever be able to use the value.

§Examples
use std::sync::Arc;

let x = Arc::new(3);
assert_eq!(Arc::try_unwrap(x), Ok(3));

let x = Arc::new(4);
let _y = Arc::clone(&x);
assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
1.70.0 · source

pub fn into_inner(this: Arc<T, A>) -> Option<T>

Returns the inner value, if the Arc has exactly one strong reference.

Otherwise, None is returned and the Arc is dropped.

This will succeed even if there are outstanding weak references.

If Arc::into_inner is called on every clone of this Arc, it is guaranteed that exactly one of the calls returns the inner value. This means in particular that the inner value is not dropped.

Arc::try_unwrap is conceptually similar to Arc::into_inner, but it is meant for different use-cases. If used as a direct replacement for Arc::into_inner anyway, such as with the expression Arc::try_unwrap(this).ok(), then it does not give the same guarantee as described in the previous paragraph. For more information, see the examples below and read the documentation of Arc::try_unwrap.

§Examples

Minimal example demonstrating the guarantee that Arc::into_inner gives.

use std::sync::Arc;

let x = Arc::new(3);
let y = Arc::clone(&x);

// Two threads calling `Arc::into_inner` on both clones of an `Arc`:
let x_thread = std::thread::spawn(|| Arc::into_inner(x));
let y_thread = std::thread::spawn(|| Arc::into_inner(y));

let x_inner_value = x_thread.join().unwrap();
let y_inner_value = y_thread.join().unwrap();

// One of the threads is guaranteed to receive the inner value:
assert!(matches!(
    (x_inner_value, y_inner_value),
    (None, Some(3)) | (Some(3), None)
));
// The result could also be `(None, None)` if the threads called
// `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead.

A more practical example demonstrating the need for Arc::into_inner:

use std::sync::Arc;

// Definition of a simple singly linked list using `Arc`:
#[derive(Clone)]
struct LinkedList<T>(Option<Arc<Node<T>>>);
struct Node<T>(T, Option<Arc<Node<T>>>);

// Dropping a long `LinkedList<T>` relying on the destructor of `Arc`
// can cause a stack overflow. To prevent this, we can provide a
// manual `Drop` implementation that does the destruction in a loop:
impl<T> Drop for LinkedList<T> {
    fn drop(&mut self) {
        let mut link = self.0.take();
        while let Some(arc_node) = link.take() {
            if let Some(Node(_value, next)) = Arc::into_inner(arc_node) {
                link = next;
            }
        }
    }
}

// Implementation of `new` and `push` omitted
impl<T> LinkedList<T> {
    /* ... */
}

// The following code could have still caused a stack overflow
// despite the manual `Drop` impl if that `Drop` impl had used
// `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`.

// Create a long list and clone it
let mut x = LinkedList::new();
let size = 100000;
for i in 0..size {
    x.push(i); // Adds i to the front of x
}
let y = x.clone();

// Drop the clones in parallel
let x_thread = std::thread::spawn(|| drop(x));
let y_thread = std::thread::spawn(|| drop(y));
x_thread.join().unwrap();
y_thread.join().unwrap();
source§

impl<T> Arc<[T]>

1.82.0 · source

pub fn new_uninit_slice(len: usize) -> Arc<[MaybeUninit<T>]>

Constructs a new atomically reference-counted slice with uninitialized contents.

§Examples
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut values = Arc::<[u32]>::new_uninit_slice(3);

// Deferred initialization:
let data = Arc::get_mut(&mut values).unwrap();
data[0].write(1);
data[1].write(2);
data[2].write(3);

let values = unsafe { values.assume_init() };

assert_eq!(*values, [1, 2, 3])
source

pub fn new_zeroed_slice(len: usize) -> Arc<[MaybeUninit<T>]>

🔬This is a nightly-only experimental API. (new_zeroed_alloc)

Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being filled with 0 bytes.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(new_zeroed_alloc)]

use std::sync::Arc;

let values = Arc::<[u32]>::new_zeroed_slice(3);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0])
source§

impl<T, A> Arc<[T], A>
where A: Allocator,

source

pub fn new_uninit_slice_in(len: usize, alloc: A) -> Arc<[MaybeUninit<T>], A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new atomically reference-counted slice with uninitialized contents in the provided allocator.

§Examples
#![feature(get_mut_unchecked)]
#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let mut values = Arc::<[u32], _>::new_uninit_slice_in(3, System);

let values = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
    Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
    Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);

    values.assume_init()
};

assert_eq!(*values, [1, 2, 3])
source

pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Arc<[MaybeUninit<T>], A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being filled with 0 bytes, in the provided allocator.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let values = Arc::<[u32], _>::new_zeroed_slice_in(3, System);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0])
source§

impl<T, A> Arc<MaybeUninit<T>, A>
where A: Allocator,

1.82.0 · source

pub unsafe fn assume_init(self) -> Arc<T, A>

Converts to Arc<T>.

§Safety

As with MaybeUninit::assume_init, it is up to the caller to guarantee that the inner value really is in an initialized state. Calling this when the content is not yet fully initialized causes immediate undefined behavior.

§Examples
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut five = Arc::<u32>::new_uninit();

// Deferred initialization:
Arc::get_mut(&mut five).unwrap().write(5);

let five = unsafe { five.assume_init() };

assert_eq!(*five, 5)
source§

impl<T, A> Arc<[MaybeUninit<T>], A>
where A: Allocator,

1.82.0 · source

pub unsafe fn assume_init(self) -> Arc<[T], A>

Converts to Arc<[T]>.

§Safety

As with MaybeUninit::assume_init, it is up to the caller to guarantee that the inner value really is in an initialized state. Calling this when the content is not yet fully initialized causes immediate undefined behavior.

§Examples
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut values = Arc::<[u32]>::new_uninit_slice(3);

// Deferred initialization:
let data = Arc::get_mut(&mut values).unwrap();
data[0].write(1);
data[1].write(2);
data[2].write(3);

let values = unsafe { values.assume_init() };

assert_eq!(*values, [1, 2, 3])
source§

impl<T> Arc<T>
where T: ?Sized,

1.17.0 · source

pub unsafe fn from_raw(ptr: *const T) -> Arc<T>

Constructs an Arc<T> from a raw pointer.

The raw pointer must have been previously returned by a call to Arc<U>::into_raw with the following requirements:

  • If U is sized, it must have the same size and alignment as T. This is trivially true if U is T.
  • If U is unsized, its data pointer must have the same size and alignment as T. This is trivially true if Arc<U> was constructed through Arc<T> and then converted to Arc<U> through an unsized coercion.

Note that if U or U’s data pointer is not T but has the same size and alignment, this is basically like transmuting references of different types. See mem::transmute for more information on what restrictions apply in this case.

The user of from_raw has to make sure a specific value of T is only dropped once.

This function is unsafe because improper use may lead to memory unsafety, even if the returned Arc<T> is never accessed.

§Examples
use std::sync::Arc;

let x = Arc::new("hello".to_owned());
let x_ptr = Arc::into_raw(x);

unsafe {
    // Convert back to an `Arc` to prevent leak.
    let x = Arc::from_raw(x_ptr);
    assert_eq!(&*x, "hello");

    // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
}

// The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!

Convert a slice back into its original array:

use std::sync::Arc;

let x: Arc<[u32]> = Arc::new([1, 2, 3]);
let x_ptr: *const [u32] = Arc::into_raw(x);

unsafe {
    let x: Arc<[u32; 3]> = Arc::from_raw(x_ptr.cast::<[u32; 3]>());
    assert_eq!(&*x, &[1, 2, 3]);
}
1.51.0 · source

pub unsafe fn increment_strong_count(ptr: *const T)

Increments the strong reference count on the Arc<T> associated with the provided pointer by one.

§Safety

The pointer must have been obtained through Arc::into_raw, and the associated Arc instance must be valid (i.e. the strong count must be at least 1) for the duration of this method.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

unsafe {
    let ptr = Arc::into_raw(five);
    Arc::increment_strong_count(ptr);

    // This assertion is deterministic because we haven't shared
    // the `Arc` between threads.
    let five = Arc::from_raw(ptr);
    assert_eq!(2, Arc::strong_count(&five));
}
1.51.0 · source

pub unsafe fn decrement_strong_count(ptr: *const T)

Decrements the strong reference count on the Arc<T> associated with the provided pointer by one.

§Safety

The pointer must have been obtained through Arc::into_raw, and the associated Arc instance must be valid (i.e. the strong count must be at least 1) when invoking this method. This method can be used to release the final Arc and backing storage, but should not be called after the final Arc has been released.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

unsafe {
    let ptr = Arc::into_raw(five);
    Arc::increment_strong_count(ptr);

    // Those assertions are deterministic because we haven't shared
    // the `Arc` between threads.
    let five = Arc::from_raw(ptr);
    assert_eq!(2, Arc::strong_count(&five));
    Arc::decrement_strong_count(ptr);
    assert_eq!(1, Arc::strong_count(&five));
}
source§

impl<T, A> Arc<T, A>
where A: Allocator, T: ?Sized,

source

pub fn allocator(this: &Arc<T, A>) -> &A

🔬This is a nightly-only experimental API. (allocator_api)

Returns a reference to the underlying allocator.

Note: this is an associated function, which means that you have to call it as Arc::allocator(&a) instead of a.allocator(). This is so that there is no conflict with a method on the inner type.

1.17.0 · source

pub fn into_raw(this: Arc<T, A>) -> *const T

Consumes the Arc, returning the wrapped pointer.

To avoid a memory leak the pointer must be converted back to an Arc using Arc::from_raw.

§Examples
use std::sync::Arc;

let x = Arc::new("hello".to_owned());
let x_ptr = Arc::into_raw(x);
assert_eq!(unsafe { &*x_ptr }, "hello");
source

pub fn into_raw_with_allocator(this: Arc<T, A>) -> (*const T, A)

🔬This is a nightly-only experimental API. (allocator_api)

Consumes the Arc, returning the wrapped pointer and allocator.

To avoid a memory leak the pointer must be converted back to an Arc using Arc::from_raw_in.

§Examples
#![feature(allocator_api)]
use std::sync::Arc;
use std::alloc::System;

let x = Arc::new_in("hello".to_owned(), System);
let (ptr, alloc) = Arc::into_raw_with_allocator(x);
assert_eq!(unsafe { &*ptr }, "hello");
let x = unsafe { Arc::from_raw_in(ptr, alloc) };
assert_eq!(&*x, "hello");
1.45.0 · source

pub fn as_ptr(this: &Arc<T, A>) -> *const T

Provides a raw pointer to the data.

The counts are not affected in any way and the Arc is not consumed. The pointer is valid for as long as there are strong counts in the Arc.

§Examples
use std::sync::Arc;

let x = Arc::new("hello".to_owned());
let y = Arc::clone(&x);
let x_ptr = Arc::as_ptr(&x);
assert_eq!(x_ptr, Arc::as_ptr(&y));
assert_eq!(unsafe { &*x_ptr }, "hello");
source

pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Arc<T, A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs an Arc<T, A> from a raw pointer.

The raw pointer must have been previously returned by a call to Arc<U, A>::into_raw with the following requirements:

  • If U is sized, it must have the same size and alignment as T. This is trivially true if U is T.
  • If U is unsized, its data pointer must have the same size and alignment as T. This is trivially true if Arc<U> was constructed through Arc<T> and then converted to Arc<U> through an unsized coercion.

Note that if U or U’s data pointer is not T but has the same size and alignment, this is basically like transmuting references of different types. See mem::transmute for more information on what restrictions apply in this case.

The raw pointer must point to a block of memory allocated by alloc

The user of from_raw has to make sure a specific value of T is only dropped once.

This function is unsafe because improper use may lead to memory unsafety, even if the returned Arc<T> is never accessed.

§Examples
#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let x = Arc::new_in("hello".to_owned(), System);
let x_ptr = Arc::into_raw(x);

unsafe {
    // Convert back to an `Arc` to prevent leak.
    let x = Arc::from_raw_in(x_ptr, System);
    assert_eq!(&*x, "hello");

    // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
}

// The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!

Convert a slice back into its original array:

#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let x: Arc<[u32], _> = Arc::new_in([1, 2, 3], System);
let x_ptr: *const [u32] = Arc::into_raw(x);

unsafe {
    let x: Arc<[u32; 3], _> = Arc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
    assert_eq!(&*x, &[1, 2, 3]);
}
1.4.0 · source

pub fn downgrade(this: &Arc<T, A>) -> Weak<T, A>
where A: Clone,

Creates a new Weak pointer to this allocation.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

let weak_five = Arc::downgrade(&five);
1.15.0 · source

pub fn weak_count(this: &Arc<T, A>) -> usize

Gets the number of Weak pointers to this allocation.

§Safety

This method by itself is safe, but using it correctly requires extra care. Another thread can change the weak count at any time, including potentially between calling this method and acting on the result.

§Examples
use std::sync::Arc;

let five = Arc::new(5);
let _weak_five = Arc::downgrade(&five);

// This assertion is deterministic because we haven't shared
// the `Arc` or `Weak` between threads.
assert_eq!(1, Arc::weak_count(&five));
1.15.0 · source

pub fn strong_count(this: &Arc<T, A>) -> usize

Gets the number of strong (Arc) pointers to this allocation.

§Safety

This method by itself is safe, but using it correctly requires extra care. Another thread can change the strong count at any time, including potentially between calling this method and acting on the result.

§Examples
use std::sync::Arc;

let five = Arc::new(5);
let _also_five = Arc::clone(&five);

// This assertion is deterministic because we haven't shared
// the `Arc` between threads.
assert_eq!(2, Arc::strong_count(&five));
source

pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
where A: Clone,

🔬This is a nightly-only experimental API. (allocator_api)

Increments the strong reference count on the Arc<T> associated with the provided pointer by one.

§Safety

The pointer must have been obtained through Arc::into_raw, and the associated Arc instance must be valid (i.e. the strong count must be at least 1) for the duration of this method,, and ptr must point to a block of memory allocated by alloc.

§Examples
#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let five = Arc::new_in(5, System);

unsafe {
    let ptr = Arc::into_raw(five);
    Arc::increment_strong_count_in(ptr, System);

    // This assertion is deterministic because we haven't shared
    // the `Arc` between threads.
    let five = Arc::from_raw_in(ptr, System);
    assert_eq!(2, Arc::strong_count(&five));
}
source

pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A)

🔬This is a nightly-only experimental API. (allocator_api)

Decrements the strong reference count on the Arc<T> associated with the provided pointer by one.

§Safety

The pointer must have been obtained through Arc::into_raw, the associated Arc instance must be valid (i.e. the strong count must be at least 1) when invoking this method, and ptr must point to a block of memory allocated by alloc. This method can be used to release the final Arc and backing storage, but should not be called after the final Arc has been released.

§Examples
#![feature(allocator_api)]

use std::sync::Arc;
use std::alloc::System;

let five = Arc::new_in(5, System);

unsafe {
    let ptr = Arc::into_raw(five);
    Arc::increment_strong_count_in(ptr, System);

    // Those assertions are deterministic because we haven't shared
    // the `Arc` between threads.
    let five = Arc::from_raw_in(ptr, System);
    assert_eq!(2, Arc::strong_count(&five));
    Arc::decrement_strong_count_in(ptr, System);
    assert_eq!(1, Arc::strong_count(&five));
}
1.17.0 · source

pub fn ptr_eq(this: &Arc<T, A>, other: &Arc<T, A>) -> bool

Returns true if the two Arcs point to the same allocation in a vein similar to ptr::eq. This function ignores the metadata of dyn Trait pointers.

§Examples
use std::sync::Arc;

let five = Arc::new(5);
let same_five = Arc::clone(&five);
let other_five = Arc::new(5);

assert!(Arc::ptr_eq(&five, &same_five));
assert!(!Arc::ptr_eq(&five, &other_five));
source§

impl<T, A> Arc<T, A>
where T: CloneToUninit + ?Sized, A: Allocator + Clone,

1.4.0 · source

pub fn make_mut(this: &mut Arc<T, A>) -> &mut T

Makes a mutable reference into the given Arc.

If there are other Arc pointers to the same allocation, then make_mut will clone the inner value to a new allocation to ensure unique ownership. This is also referred to as clone-on-write.

However, if there are no other Arc pointers to this allocation, but some Weak pointers, then the Weak pointers will be dissociated and the inner value will not be cloned.

See also get_mut, which will fail rather than cloning the inner value or dissociating Weak pointers.

§Examples
use std::sync::Arc;

let mut data = Arc::new(5);

*Arc::make_mut(&mut data) += 1;         // Won't clone anything
let mut other_data = Arc::clone(&data); // Won't clone inner data
*Arc::make_mut(&mut data) += 1;         // Clones inner data
*Arc::make_mut(&mut data) += 1;         // Won't clone anything
*Arc::make_mut(&mut other_data) *= 2;   // Won't clone anything

// Now `data` and `other_data` point to different allocations.
assert_eq!(*data, 8);
assert_eq!(*other_data, 12);

Weak pointers will be dissociated:

use std::sync::Arc;

let mut data = Arc::new(75);
let weak = Arc::downgrade(&data);

assert!(75 == *data);
assert!(75 == *weak.upgrade().unwrap());

*Arc::make_mut(&mut data) += 1;

assert!(76 == *data);
assert!(weak.upgrade().is_none());
source§

impl<T, A> Arc<T, A>
where T: Clone, A: Allocator,

1.76.0 · source

pub fn unwrap_or_clone(this: Arc<T, A>) -> T

If we have the only reference to T then unwrap it. Otherwise, clone T and return the clone.

Assuming arc_t is of type Arc<T>, this function is functionally equivalent to (*arc_t).clone(), but will avoid cloning the inner value where possible.

§Examples
let inner = String::from("test");
let ptr = inner.as_ptr();

let arc = Arc::new(inner);
let inner = Arc::unwrap_or_clone(arc);
// The inner value was not cloned
assert!(ptr::eq(ptr, inner.as_ptr()));

let arc = Arc::new(inner);
let arc2 = arc.clone();
let inner = Arc::unwrap_or_clone(arc);
// Because there were 2 references, we had to clone the inner value.
assert!(!ptr::eq(ptr, inner.as_ptr()));
// `arc2` is the last reference, so when we unwrap it we get back
// the original `String`.
let inner = Arc::unwrap_or_clone(arc2);
assert!(ptr::eq(ptr, inner.as_ptr()));
source§

impl<T, A> Arc<T, A>
where A: Allocator, T: ?Sized,

1.4.0 · source

pub fn get_mut(this: &mut Arc<T, A>) -> Option<&mut T>

Returns a mutable reference into the given Arc, if there are no other Arc or Weak pointers to the same allocation.

Returns None otherwise, because it is not safe to mutate a shared value.

See also make_mut, which will clone the inner value when there are other Arc pointers.

§Examples
use std::sync::Arc;

let mut x = Arc::new(3);
*Arc::get_mut(&mut x).unwrap() = 4;
assert_eq!(*x, 4);

let _y = Arc::clone(&x);
assert!(Arc::get_mut(&mut x).is_none());
source

pub unsafe fn get_mut_unchecked(this: &mut Arc<T, A>) -> &mut T

🔬This is a nightly-only experimental API. (get_mut_unchecked)

Returns a mutable reference into the given Arc, without any check.

See also get_mut, which is safe and does appropriate checks.

§Safety

If any other Arc or Weak pointers to the same allocation exist, then they must not be dereferenced or have active borrows for the duration of the returned borrow, and their inner type must be exactly the same as the inner type of this Rc (including lifetimes). This is trivially the case if no such pointers exist, for example immediately after Arc::new.

§Examples
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut x = Arc::new(String::new());
unsafe {
    Arc::get_mut_unchecked(&mut x).push_str("foo")
}
assert_eq!(*x, "foo");

Other Arc pointers to the same allocation must be to the same type.

#![feature(get_mut_unchecked)]

use std::sync::Arc;

let x: Arc<str> = Arc::from("Hello, world!");
let mut y: Arc<[u8]> = x.clone().into();
unsafe {
    // this is Undefined Behavior, because x's inner type is str, not [u8]
    Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
}
println!("{}", &*x); // Invalid UTF-8 in a str

Other Arc pointers to the same allocation must be to the exact same type, including lifetimes.

#![feature(get_mut_unchecked)]

use std::sync::Arc;

let x: Arc<&str> = Arc::new("Hello, world!");
{
    let s = String::from("Oh, no!");
    let mut y: Arc<&str> = x.clone().into();
    unsafe {
        // this is Undefined Behavior, because x's inner type
        // is &'long str, not &'short str
        *Arc::get_mut_unchecked(&mut y) = &s;
    }
}
println!("{}", &*x); // Use-after-free
source§

impl<A> Arc<dyn Any + Sync + Send, A>
where A: Allocator,

1.29.0 · source

pub fn downcast<T>(self) -> Result<Arc<T, A>, Arc<dyn Any + Sync + Send, A>>
where T: Any + Send + Sync,

Attempts to downcast the Arc<dyn Any + Send + Sync> to a concrete type.

§Examples
use std::any::Any;
use std::sync::Arc;

fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
    if let Ok(string) = value.downcast::<String>() {
        println!("String ({}): {}", string.len(), string);
    }
}

let my_string = "Hello World".to_string();
print_if_string(Arc::new(my_string));
print_if_string(Arc::new(0i8));
source

pub unsafe fn downcast_unchecked<T>(self) -> Arc<T, A>
where T: Any + Send + Sync,

🔬This is a nightly-only experimental API. (downcast_unchecked)

Downcasts the Arc<dyn Any + Send + Sync> to a concrete type.

For a safe alternative see downcast.

§Examples
#![feature(downcast_unchecked)]

use std::any::Any;
use std::sync::Arc;

let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize);

unsafe {
    assert_eq!(*x.downcast_unchecked::<usize>(), 1);
}
§Safety

The contained value must be of type T. Calling this method with the incorrect type is undefined behavior.

Trait Implementations§

§

impl<T> Access for Arc<T>
where T: Access + ?Sized,

All functions in Accessor only requires &self, so it’s safe to implement Accessor for Arc<impl Access>.

§

type Reader = <T as Access>::Reader

Reader is the associated reader returned in read operation.
§

type Writer = <T as Access>::Writer

Writer is the associated writer returned in write operation.
§

type Lister = <T as Access>::Lister

Lister is the associated lister returned in list operation.
§

type BlockingReader = <T as Access>::BlockingReader

BlockingReader is the associated reader returned blocking_read operation.
§

type BlockingWriter = <T as Access>::BlockingWriter

BlockingWriter is the associated writer returned blocking_write operation.
§

type BlockingLister = <T as Access>::BlockingLister

BlockingLister is the associated lister returned blocking_list operation.
§

fn info(&self) -> Arc<AccessorInfo>

Invoke the info operation to get metadata of accessor. Read more
§

fn create_dir( &self, path: &str, args: OpCreateDir, ) -> impl Future<Output = Result<RpCreateDir, Error>> + MaybeSend

Invoke the create operation on the specified path Read more
§

fn stat( &self, path: &str, args: OpStat, ) -> impl Future<Output = Result<RpStat, Error>> + MaybeSend

Invoke the stat operation on the specified path. Read more
§

fn read( &self, path: &str, args: OpRead, ) -> impl Future<Output = Result<(RpRead, <Arc<T> as Access>::Reader), Error>> + MaybeSend

Invoke the read operation on the specified path, returns a [Reader][crate::Reader] if operate successful. Read more
§

fn write( &self, path: &str, args: OpWrite, ) -> impl Future<Output = Result<(RpWrite, <Arc<T> as Access>::Writer), Error>> + MaybeSend

Invoke the write operation on the specified path, returns a written size if operate successful. Read more
§

fn delete( &self, path: &str, args: OpDelete, ) -> impl Future<Output = Result<RpDelete, Error>> + MaybeSend

Invoke the delete operation on the specified path. Read more
§

fn list( &self, path: &str, args: OpList, ) -> impl Future<Output = Result<(RpList, <Arc<T> as Access>::Lister), Error>> + MaybeSend

Invoke the list operation on the specified path. Read more
§

fn copy( &self, from: &str, to: &str, args: OpCopy, ) -> impl Future<Output = Result<RpCopy, Error>> + MaybeSend

Invoke the copy operation on the specified from path and to path. Read more
§

fn rename( &self, from: &str, to: &str, args: OpRename, ) -> impl Future<Output = Result<RpRename, Error>> + MaybeSend

Invoke the rename operation on the specified from path and to path. Read more
§

fn presign( &self, path: &str, args: OpPresign, ) -> impl Future<Output = Result<RpPresign, Error>> + MaybeSend

Invoke the presign operation on the specified path. Read more
§

fn batch( &self, args: OpBatch, ) -> impl Future<Output = Result<RpBatch, Error>> + MaybeSend

Invoke the batch operations. Read more
§

fn blocking_create_dir( &self, path: &str, args: OpCreateDir, ) -> Result<RpCreateDir, Error>

Invoke the blocking_create operation on the specified path. Read more
§

fn blocking_stat(&self, path: &str, args: OpStat) -> Result<RpStat, Error>

Invoke the blocking_stat operation on the specified path. Read more
§

fn blocking_read( &self, path: &str, args: OpRead, ) -> Result<(RpRead, <Arc<T> as Access>::BlockingReader), Error>

Invoke the blocking_read operation on the specified path. Read more
§

fn blocking_write( &self, path: &str, args: OpWrite, ) -> Result<(RpWrite, <Arc<T> as Access>::BlockingWriter), Error>

Invoke the blocking_write operation on the specified path. Read more
§

fn blocking_delete(&self, path: &str, args: OpDelete) -> Result<RpDelete, Error>

Invoke the blocking_delete operation on the specified path. Read more
§

fn blocking_list( &self, path: &str, args: OpList, ) -> Result<(RpList, <Arc<T> as Access>::BlockingLister), Error>

Invoke the blocking_list operation on the specified path. Read more
§

fn blocking_copy( &self, from: &str, to: &str, args: OpCopy, ) -> Result<RpCopy, Error>

Invoke the blocking_copy operation on the specified from path and to path. Read more
§

fn blocking_rename( &self, from: &str, to: &str, args: OpRename, ) -> Result<RpRename, Error>

Invoke the blocking_rename operation on the specified from path and to path. Read more
§

impl<T> Access for Arc<T>
where T: Access + ?Sized,

All functions in Accessor only requires &self, so it’s safe to implement Accessor for Arc<impl Access>.

§

type Reader = <T as Access>::Reader

Reader is the associated reader returned in read operation.
§

type Writer = <T as Access>::Writer

Writer is the associated writer returned in write operation.
§

type Lister = <T as Access>::Lister

Lister is the associated lister returned in list operation.
§

type BlockingReader = <T as Access>::BlockingReader

BlockingReader is the associated reader returned blocking_read operation.
§

type BlockingWriter = <T as Access>::BlockingWriter

BlockingWriter is the associated writer returned blocking_write operation.
§

type BlockingLister = <T as Access>::BlockingLister

BlockingLister is the associated lister returned blocking_list operation.
§

fn info(&self) -> Arc<AccessorInfo>

Invoke the info operation to get metadata of accessor. Read more
§

fn create_dir( &self, path: &str, args: OpCreateDir, ) -> impl Future<Output = Result<RpCreateDir, Error>> + MaybeSend

Invoke the create operation on the specified path Read more
§

fn stat( &self, path: &str, args: OpStat, ) -> impl Future<Output = Result<RpStat, Error>> + MaybeSend

Invoke the stat operation on the specified path. Read more
§

fn read( &self, path: &str, args: OpRead, ) -> impl Future<Output = Result<(RpRead, <Arc<T> as Access>::Reader), Error>> + MaybeSend

Invoke the read operation on the specified path, returns a [Reader][crate::Reader] if operate successful. Read more
§

fn write( &self, path: &str, args: OpWrite, ) -> impl Future<Output = Result<(RpWrite, <Arc<T> as Access>::Writer), Error>> + MaybeSend

Invoke the write operation on the specified path, returns a written size if operate successful. Read more
§

fn delete( &self, path: &str, args: OpDelete, ) -> impl Future<Output = Result<RpDelete, Error>> + MaybeSend

Invoke the delete operation on the specified path. Read more
§

fn list( &self, path: &str, args: OpList, ) -> impl Future<Output = Result<(RpList, <Arc<T> as Access>::Lister), Error>> + MaybeSend

Invoke the list operation on the specified path. Read more
§

fn copy( &self, from: &str, to: &str, args: OpCopy, ) -> impl Future<Output = Result<RpCopy, Error>> + MaybeSend

Invoke the copy operation on the specified from path and to path. Read more
§

fn rename( &self, from: &str, to: &str, args: OpRename, ) -> impl Future<Output = Result<RpRename, Error>> + MaybeSend

Invoke the rename operation on the specified from path and to path. Read more
§

fn presign( &self, path: &str, args: OpPresign, ) -> impl Future<Output = Result<RpPresign, Error>> + MaybeSend

Invoke the presign operation on the specified path. Read more
§

fn batch( &self, args: OpBatch, ) -> impl Future<Output = Result<RpBatch, Error>> + MaybeSend

Invoke the batch operations. Read more
§

fn blocking_create_dir( &self, path: &str, args: OpCreateDir, ) -> Result<RpCreateDir, Error>

Invoke the blocking_create operation on the specified path. Read more
§

fn blocking_stat(&self, path: &str, args: OpStat) -> Result<RpStat, Error>

Invoke the blocking_stat operation on the specified path. Read more
§

fn blocking_read( &self, path: &str, args: OpRead, ) -> Result<(RpRead, <Arc<T> as Access>::BlockingReader), Error>

Invoke the blocking_read operation on the specified path. Read more
§

fn blocking_write( &self, path: &str, args: OpWrite, ) -> Result<(RpWrite, <Arc<T> as Access>::BlockingWriter), Error>

Invoke the blocking_write operation on the specified path. Read more
§

fn blocking_delete(&self, path: &str, args: OpDelete) -> Result<RpDelete, Error>

Invoke the blocking_delete operation on the specified path. Read more
§

fn blocking_list( &self, path: &str, args: OpList, ) -> Result<(RpList, <Arc<T> as Access>::BlockingLister), Error>

Invoke the blocking_list operation on the specified path. Read more
§

fn blocking_copy( &self, from: &str, to: &str, args: OpCopy, ) -> Result<RpCopy, Error>

Invoke the blocking_copy operation on the specified from path and to path. Read more
§

fn blocking_rename( &self, from: &str, to: &str, args: OpRename, ) -> Result<RpRename, Error>

Invoke the blocking_rename operation on the specified from path and to path. Read more
§

impl Array for Arc<dyn Array>

Ergonomics: Allow use of an ArrayRef as an &dyn Array

§

fn as_any(&self) -> &(dyn Any + 'static)

Returns the array as Any so that it can be downcasted to a specific implementation. Read more
§

fn to_data(&self) -> ArrayData

Returns the underlying data of this array
§

fn into_data(self) -> ArrayData

Returns the underlying data of this array Read more
§

fn data_type(&self) -> &DataType

Returns a reference to the [DataType] of this array. Read more
§

fn slice(&self, offset: usize, length: usize) -> Arc<dyn Array>

Returns a zero-copy slice of this array with the indicated offset and length. Read more
§

fn len(&self) -> usize

Returns the length (i.e., number of elements) of this array. Read more
§

fn is_empty(&self) -> bool

Returns whether this array is empty. Read more
§

fn offset(&self) -> usize

Returns the offset into the underlying data used by this array(-slice). Note that the underlying data can be shared by many arrays. This defaults to 0. Read more
§

fn nulls(&self) -> Option<&NullBuffer>

Returns the null buffer of this array if any. Read more
§

fn logical_nulls(&self) -> Option<NullBuffer>

Returns a potentially computed [NullBuffer] that represents the logical null values of this array, if any. Read more
§

fn is_null(&self, index: usize) -> bool

Returns whether the element at index is null according to [Array::nulls] Read more
§

fn is_valid(&self, index: usize) -> bool

Returns whether the element at index is not null, the opposite of [Self::is_null]. Read more
§

fn null_count(&self) -> usize

Returns the total number of physical null values in this array. Read more
§

fn is_nullable(&self) -> bool

Returns false if the array is guaranteed to not contain any logical nulls Read more
§

fn get_buffer_memory_size(&self) -> usize

Returns the total number of bytes of memory pointed to by this array. The buffers store bytes in the Arrow memory format, and include the data as well as the validity map. Note that this does not always correspond to the exact memory usage of an array, since multiple arrays can share the same buffers or slices thereof.
§

fn get_array_memory_size(&self) -> usize

Returns the total number of bytes of memory occupied physically by this array. This value will always be greater than returned by get_buffer_memory_size() and includes the overhead of the data structures that contain the pointers to the various buffers.
§

impl Array for Arc<dyn Array>

Ergonomics: Allow use of an ArrayRef as an &dyn Array

§

fn as_any(&self) -> &(dyn Any + 'static)

Returns the array as Any so that it can be downcasted to a specific implementation. Read more
§

fn to_data(&self) -> ArrayData

Returns the underlying data of this array
§

fn into_data(self) -> ArrayData

Returns the underlying data of this array Read more
§

fn data_type(&self) -> &DataType

Returns a reference to the [DataType] of this array. Read more
§

fn slice(&self, offset: usize, length: usize) -> Arc<dyn Array>

Returns a zero-copy slice of this array with the indicated offset and length. Read more
§

fn len(&self) -> usize

Returns the length (i.e., number of elements) of this array. Read more
§

fn is_empty(&self) -> bool

Returns whether this array is empty. Read more
§

fn offset(&self) -> usize

Returns the offset into the underlying data used by this array(-slice). Note that the underlying data can be shared by many arrays. This defaults to 0. Read more
§

fn nulls(&self) -> Option<&NullBuffer>

Returns the null buffer of this array if any. Read more
§

fn logical_nulls(&self) -> Option<NullBuffer>

Returns a potentially computed [NullBuffer] that represents the logical null values of this array, if any. Read more
§

fn is_null(&self, index: usize) -> bool

Returns whether the element at index is null according to [Array::nulls] Read more
§

fn is_valid(&self, index: usize) -> bool

Returns whether the element at index is not null, the opposite of [Self::is_null]. Read more
§

fn null_count(&self) -> usize

Returns the total number of physical null values in this array. Read more
§

fn is_nullable(&self) -> bool

Returns false if the array is guaranteed to not contain any logical nulls Read more
§

fn get_buffer_memory_size(&self) -> usize

Returns the total number of bytes of memory pointed to by this array. The buffers store bytes in the Arrow memory format, and include the data as well as the validity map. Note that this does not always correspond to the exact memory usage of an array, since multiple arrays can share the same buffers or slices thereof.
§

fn get_array_memory_size(&self) -> usize

Returns the total number of bytes of memory occupied physically by this array. This value will always be greater than returned by get_buffer_memory_size() and includes the overhead of the data structures that contain the pointers to the various buffers.
§

impl Array for Arc<dyn Array>

Ergonomics: Allow use of an ArrayRef as an &dyn Array

§

fn as_any(&self) -> &(dyn Any + 'static)

Returns the array as Any so that it can be downcasted to a specific implementation. Read more
§

fn to_data(&self) -> ArrayData

Returns the underlying data of this array
§

fn into_data(self) -> ArrayData

Returns the underlying data of this array Read more
§

fn data_type(&self) -> &DataType

Returns a reference to the [DataType] of this array. Read more
§

fn slice(&self, offset: usize, length: usize) -> Arc<dyn Array>

Returns a zero-copy slice of this array with the indicated offset and length. Read more
§

fn len(&self) -> usize

Returns the length (i.e., number of elements) of this array. Read more
§

fn is_empty(&self) -> bool

Returns whether this array is empty. Read more
§

fn offset(&self) -> usize

Returns the offset into the underlying data used by this array(-slice). Note that the underlying data can be shared by many arrays. This defaults to 0. Read more
§

fn nulls(&self) -> Option<&NullBuffer>

Returns the null buffer of this array if any. Read more
§

fn logical_nulls(&self) -> Option<NullBuffer>

Returns a potentially computed [NullBuffer] that represent the logical null values of this array, if any. Read more
§

fn is_null(&self, index: usize) -> bool

Returns whether the element at index is null according to [Array::nulls] Read more
§

fn is_valid(&self, index: usize) -> bool

Returns whether the element at index is not null, the opposite of [Self::is_null]. Read more
§

fn null_count(&self) -> usize

Returns the total number of physical null values in this array. Read more
§

fn is_nullable(&self) -> bool

Returns false if the array is guaranteed to not contain any logical nulls Read more
§

fn get_buffer_memory_size(&self) -> usize

Returns the total number of bytes of memory pointed to by this array. The buffers store bytes in the Arrow memory format, and include the data as well as the validity map.
§

fn get_array_memory_size(&self) -> usize

Returns the total number of bytes of memory occupied physically by this array. This value will always be greater than returned by get_buffer_memory_size() and includes the overhead of the data structures that contain the pointers to the various buffers.
§

impl AsArray for Arc<dyn Array>

§

fn as_boolean_opt(&self) -> Option<&BooleanArray>

Downcast this to a [BooleanArray] returning None if not possible
§

fn as_primitive_opt<T>(&self) -> Option<&PrimitiveArray<T>>
where T: ArrowPrimitiveType,

Downcast this to a [PrimitiveArray] returning None if not possible
§

fn as_bytes_opt<T>(&self) -> Option<&GenericByteArray<T>>
where T: ByteArrayType,

Downcast this to a [GenericByteArray] returning None if not possible
§

fn as_byte_view_opt<T>(&self) -> Option<&GenericByteViewArray<T>>
where T: ByteViewType,

Downcast this to a [GenericByteViewArray] returning None if not possible
§

fn as_struct_opt(&self) -> Option<&StructArray>

Downcast this to a [StructArray] returning None if not possible
§

fn as_list_opt<O>(&self) -> Option<&GenericListArray<O>>
where O: OffsetSizeTrait,

Downcast this to a [GenericListArray] returning None if not possible
§

fn as_fixed_size_binary_opt(&self) -> Option<&FixedSizeBinaryArray>

Downcast this to a [FixedSizeBinaryArray] returning None if not possible
§

fn as_fixed_size_list_opt(&self) -> Option<&FixedSizeListArray>

Downcast this to a [FixedSizeListArray] returning None if not possible
§

fn as_map_opt(&self) -> Option<&MapArray>

Downcast this to a [MapArray] returning None if not possible
§

fn as_dictionary_opt<K>(&self) -> Option<&DictionaryArray<K>>
where K: ArrowDictionaryKeyType,

Downcast this to a [DictionaryArray] returning None if not possible
§

fn as_any_dictionary_opt(&self) -> Option<&dyn AnyDictionaryArray>

Downcasts this to a [AnyDictionaryArray] returning None if not possible
§

fn as_boolean(&self) -> &BooleanArray

Downcast this to a [BooleanArray] panicking if not possible
§

fn as_primitive<T>(&self) -> &PrimitiveArray<T>
where T: ArrowPrimitiveType,

Downcast this to a [PrimitiveArray] panicking if not possible
§

fn as_bytes<T>(&self) -> &GenericByteArray<T>
where T: ByteArrayType,

Downcast this to a [GenericByteArray] panicking if not possible
§

fn as_string_opt<O>(&self) -> Option<&GenericByteArray<GenericStringType<O>>>
where O: OffsetSizeTrait,

Downcast this to a [GenericStringArray] returning None if not possible
§

fn as_string<O>(&self) -> &GenericByteArray<GenericStringType<O>>
where O: OffsetSizeTrait,

Downcast this to a [GenericStringArray] panicking if not possible
§

fn as_binary_opt<O>(&self) -> Option<&GenericByteArray<GenericBinaryType<O>>>
where O: OffsetSizeTrait,

Downcast this to a [GenericBinaryArray] returning None if not possible
§

fn as_binary<O>(&self) -> &GenericByteArray<GenericBinaryType<O>>
where O: OffsetSizeTrait,

Downcast this to a [GenericBinaryArray] panicking if not possible
§

fn as_string_view(&self) -> &GenericByteViewArray<StringViewType>

Downcast this to a [StringViewArray] returning None if not possible
§

fn as_string_view_opt(&self) -> Option<&GenericByteViewArray<StringViewType>>

Downcast this to a [StringViewArray] returning None if not possible
§

fn as_binary_view(&self) -> &GenericByteViewArray<BinaryViewType>

Downcast this to a [StringViewArray] returning None if not possible
§

fn as_binary_view_opt(&self) -> Option<&GenericByteViewArray<BinaryViewType>>

Downcast this to a [BinaryViewArray] returning None if not possible
§

fn as_byte_view<T>(&self) -> &GenericByteViewArray<T>
where T: ByteViewType,

Downcast this to a [GenericByteViewArray] returning None if not possible
§

fn as_struct(&self) -> &StructArray

Downcast this to a [StructArray] panicking if not possible
§

fn as_list<O>(&self) -> &GenericListArray<O>
where O: OffsetSizeTrait,

Downcast this to a [GenericListArray] panicking if not possible
§

fn as_fixed_size_binary(&self) -> &FixedSizeBinaryArray

Downcast this to a [FixedSizeBinaryArray] panicking if not possible
§

fn as_fixed_size_list(&self) -> &FixedSizeListArray

Downcast this to a [FixedSizeListArray] panicking if not possible
§

fn as_map(&self) -> &MapArray

Downcast this to a [MapArray] panicking if not possible
§

fn as_dictionary<K>(&self) -> &DictionaryArray<K>
where K: ArrowDictionaryKeyType,

Downcast this to a [DictionaryArray] panicking if not possible
§

fn as_any_dictionary(&self) -> &dyn AnyDictionaryArray

Downcasts this to a [AnyDictionaryArray] panicking if not possible
§

impl AsArray for Arc<dyn Array>

§

fn as_boolean_opt(&self) -> Option<&BooleanArray>

Downcast this to a [BooleanArray] returning None if not possible
§

fn as_primitive_opt<T>(&self) -> Option<&PrimitiveArray<T>>
where T: ArrowPrimitiveType,

Downcast this to a [PrimitiveArray] returning None if not possible
§

fn as_bytes_opt<T>(&self) -> Option<&GenericByteArray<T>>
where T: ByteArrayType,

Downcast this to a [GenericByteArray] returning None if not possible
§

fn as_byte_view_opt<T>(&self) -> Option<&GenericByteViewArray<T>>
where T: ByteViewType,

Downcast this to a [GenericByteViewArray] returning None if not possible
§

fn as_struct_opt(&self) -> Option<&StructArray>

Downcast this to a [StructArray] returning None if not possible
§

fn as_union_opt(&self) -> Option<&UnionArray>

Downcast this to a [UnionArray] returning None if not possible
§

fn as_list_opt<O>(&self) -> Option<&GenericListArray<O>>
where O: OffsetSizeTrait,

Downcast this to a [GenericListArray] returning None if not possible
§

fn as_fixed_size_binary_opt(&self) -> Option<&FixedSizeBinaryArray>

Downcast this to a [FixedSizeBinaryArray] returning None if not possible
§

fn as_fixed_size_list_opt(&self) -> Option<&FixedSizeListArray>

Downcast this to a [FixedSizeListArray] returning None if not possible
§

fn as_map_opt(&self) -> Option<&MapArray>

Downcast this to a [MapArray] returning None if not possible
§

fn as_dictionary_opt<K>(&self) -> Option<&DictionaryArray<K>>
where K: ArrowDictionaryKeyType,

Downcast this to a [DictionaryArray] returning None if not possible
§

fn as_any_dictionary_opt(&self) -> Option<&dyn AnyDictionaryArray>

Downcasts this to a [AnyDictionaryArray] returning None if not possible
§

fn as_boolean(&self) -> &BooleanArray

Downcast this to a [BooleanArray] panicking if not possible
§

fn as_primitive<T>(&self) -> &PrimitiveArray<T>
where T: ArrowPrimitiveType,

Downcast this to a [PrimitiveArray] panicking if not possible
§

fn as_bytes<T>(&self) -> &GenericByteArray<T>
where T: ByteArrayType,

Downcast this to a [GenericByteArray] panicking if not possible
§

fn as_string_opt<O>(&self) -> Option<&GenericByteArray<GenericStringType<O>>>
where O: OffsetSizeTrait,

Downcast this to a [GenericStringArray] returning None if not possible
§

fn as_string<O>(&self) -> &GenericByteArray<GenericStringType<O>>
where O: OffsetSizeTrait,

Downcast this to a [GenericStringArray] panicking if not possible
§

fn as_binary_opt<O>(&self) -> Option<&GenericByteArray<GenericBinaryType<O>>>
where O: OffsetSizeTrait,

Downcast this to a [GenericBinaryArray] returning None if not possible
§

fn as_binary<O>(&self) -> &GenericByteArray<GenericBinaryType<O>>
where O: OffsetSizeTrait,

Downcast this to a [GenericBinaryArray] panicking if not possible
§

fn as_string_view(&self) -> &GenericByteViewArray<StringViewType>

Downcast this to a [StringViewArray] returning None if not possible
§

fn as_string_view_opt(&self) -> Option<&GenericByteViewArray<StringViewType>>

Downcast this to a [StringViewArray] returning None if not possible
§

fn as_binary_view(&self) -> &GenericByteViewArray<BinaryViewType>

Downcast this to a [StringViewArray] returning None if not possible
§

fn as_binary_view_opt(&self) -> Option<&GenericByteViewArray<BinaryViewType>>

Downcast this to a [BinaryViewArray] returning None if not possible
§

fn as_byte_view<T>(&self) -> &GenericByteViewArray<T>
where T: ByteViewType,

Downcast this to a [GenericByteViewArray] returning None if not possible
§

fn as_struct(&self) -> &StructArray

Downcast this to a [StructArray] panicking if not possible
§

fn as_union(&self) -> &UnionArray

Downcast this to a [UnionArray] panicking if not possible
§

fn as_list<O>(&self) -> &GenericListArray<O>
where O: OffsetSizeTrait,

Downcast this to a [GenericListArray] panicking if not possible
§

fn as_fixed_size_binary(&self) -> &FixedSizeBinaryArray

Downcast this to a [FixedSizeBinaryArray] panicking if not possible
§

fn as_fixed_size_list(&self) -> &FixedSizeListArray

Downcast this to a [FixedSizeListArray] panicking if not possible
§

fn as_map(&self) -> &MapArray

Downcast this to a [MapArray] panicking if not possible
§

fn as_dictionary<K>(&self) -> &DictionaryArray<K>
where K: ArrowDictionaryKeyType,

Downcast this to a [DictionaryArray] panicking if not possible
§

fn as_any_dictionary(&self) -> &dyn AnyDictionaryArray

Downcasts this to a [AnyDictionaryArray] panicking if not possible
§

impl AsArray for Arc<dyn Array>

§

fn as_boolean_opt(&self) -> Option<&BooleanArray>

Downcast this to a [BooleanArray] returning None if not possible
§

fn as_primitive_opt<T>(&self) -> Option<&PrimitiveArray<T>>
where T: ArrowPrimitiveType,

Downcast this to a [PrimitiveArray] returning None if not possible
§

fn as_bytes_opt<T>(&self) -> Option<&GenericByteArray<T>>
where T: ByteArrayType,

Downcast this to a [GenericByteArray] returning None if not possible
§

fn as_struct_opt(&self) -> Option<&StructArray>

Downcast this to a [StructArray] returning None if not possible
§

fn as_list_opt<O>(&self) -> Option<&GenericListArray<O>>
where O: OffsetSizeTrait,

Downcast this to a [GenericListArray] returning None if not possible
§

fn as_fixed_size_binary_opt(&self) -> Option<&FixedSizeBinaryArray>

Downcast this to a [FixedSizeBinaryArray] returning None if not possible
§

fn as_fixed_size_list_opt(&self) -> Option<&FixedSizeListArray>

Downcast this to a [FixedSizeListArray] returning None if not possible
§

fn as_map_opt(&self) -> Option<&MapArray>

Downcast this to a [MapArray] returning None if not possible
§

fn as_dictionary_opt<K>(&self) -> Option<&DictionaryArray<K>>
where K: ArrowDictionaryKeyType,

Downcast this to a [DictionaryArray] returning None if not possible
§

fn as_any_dictionary_opt(&self) -> Option<&dyn AnyDictionaryArray>

Downcasts this to a [AnyDictionaryArray] returning None if not possible
§

fn as_boolean(&self) -> &BooleanArray

Downcast this to a [BooleanArray] panicking if not possible
§

fn as_primitive<T>(&self) -> &PrimitiveArray<T>
where T: ArrowPrimitiveType,

Downcast this to a [PrimitiveArray] panicking if not possible
§

fn as_bytes<T>(&self) -> &GenericByteArray<T>
where T: ByteArrayType,

Downcast this to a [GenericByteArray] panicking if not possible
§

fn as_string_opt<O>(&self) -> Option<&GenericByteArray<GenericStringType<O>>>
where O: OffsetSizeTrait,

Downcast this to a [GenericStringArray] returning None if not possible
§

fn as_string<O>(&self) -> &GenericByteArray<GenericStringType<O>>
where O: OffsetSizeTrait,

Downcast this to a [GenericStringArray] panicking if not possible
§

fn as_binary_opt<O>(&self) -> Option<&GenericByteArray<GenericBinaryType<O>>>
where O: OffsetSizeTrait,

Downcast this to a [GenericBinaryArray] returning None if not possible
§

fn as_binary<O>(&self) -> &GenericByteArray<GenericBinaryType<O>>
where O: OffsetSizeTrait,

Downcast this to a [GenericBinaryArray] panicking if not possible
§

fn as_struct(&self) -> &StructArray

Downcast this to a [StructArray] panicking if not possible
§

fn as_list<O>(&self) -> &GenericListArray<O>
where O: OffsetSizeTrait,

Downcast this to a [GenericListArray] panicking if not possible
§

fn as_fixed_size_binary(&self) -> &FixedSizeBinaryArray

Downcast this to a [FixedSizeBinaryArray] panicking if not possible
§

fn as_fixed_size_list(&self) -> &FixedSizeListArray

Downcast this to a [FixedSizeListArray] panicking if not possible
§

fn as_map(&self) -> &MapArray

Downcast this to a [MapArray] panicking if not possible
§

fn as_dictionary<K>(&self) -> &DictionaryArray<K>
where K: ArrowDictionaryKeyType,

Downcast this to a [DictionaryArray] panicking if not possible
§

fn as_any_dictionary(&self) -> &dyn AnyDictionaryArray

Downcasts this to a [AnyDictionaryArray] panicking if not possible
1.64.0 · source§

impl<T> AsFd for Arc<T>
where T: AsFd + ?Sized,

This impl allows implementing traits that require AsFd on Arc.

use std::net::UdpSocket;
use std::sync::Arc;

trait MyTrait: AsFd {}
impl MyTrait for Arc<UdpSocket> {}
impl MyTrait for Box<UdpSocket> {}
source§

fn as_fd(&self) -> BorrowedFd<'_>

Borrows the file descriptor. Read more
§

impl AsQuery for Arc<[u8]>

§

fn as_query(&self) -> Cow<'_, [u8]>

§

impl AsQuery for Arc<str>

§

fn as_query(&self) -> Cow<'_, [u8]>

1.63.0 · source§

impl<T> AsRawFd for Arc<T>
where T: AsRawFd,

This impl allows implementing traits that require AsRawFd on Arc.

use std::net::UdpSocket;
use std::sync::Arc;
trait MyTrait: AsRawFd {
}
impl MyTrait for Arc<UdpSocket> {}
impl MyTrait for Box<UdpSocket> {}
source§

fn as_raw_fd(&self) -> i32

Extracts the raw file descriptor. Read more
1.5.0 · source§

impl<T, A> AsRef<T> for Arc<T, A>
where A: Allocator, T: ?Sized,

source§

fn as_ref(&self) -> &T

Converts this type into a shared reference of the (usually inferred) input type.
§

impl<T> AsyncSleep for Arc<T>
where T: AsyncSleep + ?Sized,

§

fn sleep(&self, duration: Duration) -> Sleep

Returns a future that sleeps for the given duration of time.
1.0.0 · source§

impl<T, A> Borrow<T> for Arc<T, A>
where A: Allocator, T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<'de, T> BorrowDecode<'de> for Arc<[T]>
where T: BorrowDecode<'de> + 'de,

source§

fn borrow_decode<D>(decoder: &mut D) -> Result<Arc<[T]>, DecodeError>
where D: BorrowDecoder<'de>,

Attempt to decode this type with the given BorrowDecode.
source§

impl<'de, T> BorrowDecode<'de> for Arc<T>
where T: BorrowDecode<'de>,

source§

fn borrow_decode<D>(decoder: &mut D) -> Result<Arc<T>, DecodeError>
where D: BorrowDecoder<'de>,

Attempt to decode this type with the given BorrowDecode.
source§

impl<'de> BorrowDecode<'de> for Arc<str>

source§

fn borrow_decode<D>(decoder: &mut D) -> Result<Arc<str>, DecodeError>
where D: BorrowDecoder<'de>,

Attempt to decode this type with the given BorrowDecode.
1.0.0 · source§

impl<T, A> Clone for Arc<T, A>
where A: Allocator + Clone, T: ?Sized,

source§

fn clone(&self) -> Arc<T, A>

Makes a clone of the Arc pointer.

This creates another pointer to the same allocation, increasing the strong reference count.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

let _ = Arc::clone(&five);
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<T> CounterFn for Arc<T>
where T: CounterFn,

§

fn increment(&self, value: u64)

Increments the counter by the given amount.
§

fn absolute(&self, value: u64)

Sets the counter to at least the given amount. Read more
1.0.0 · source§

impl<T, A> Debug for Arc<T, A>
where T: Debug + ?Sized, A: Allocator,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<T> Decode for Arc<[T]>
where T: Decode + 'static,

source§

fn decode<D>(decoder: &mut D) -> Result<Arc<[T]>, DecodeError>
where D: Decoder,

Attempt to decode this type with the given Decode.
source§

impl<T> Decode for Arc<T>
where T: Decode,

source§

fn decode<D>(decoder: &mut D) -> Result<Arc<T>, DecodeError>
where D: Decoder,

Attempt to decode this type with the given Decode.
source§

impl Decode for Arc<str>

source§

fn decode<D>(decoder: &mut D) -> Result<Arc<str>, DecodeError>
where D: Decoder,

Attempt to decode this type with the given Decode.
1.80.0 · source§

impl<T> Default for Arc<[T]>

source§

fn default() -> Arc<[T]>

Creates an empty [T] inside an Arc

This may or may not share an allocation with other Arcs.

1.80.0 · source§

impl Default for Arc<CStr>

source§

fn default() -> Arc<CStr>

Creates an empty CStr inside an Arc

This may or may not share an allocation with other Arcs.

1.0.0 · source§

impl<T> Default for Arc<T>
where T: Default,

source§

fn default() -> Arc<T>

Creates a new Arc<T>, with the Default value for T.

§Examples
use std::sync::Arc;

let x: Arc<i32> = Default::default();
assert_eq!(*x, 0);
1.80.0 · source§

impl Default for Arc<str>

source§

fn default() -> Arc<str>

Creates an empty str inside an Arc

This may or may not share an allocation with other Arcs.

1.0.0 · source§

impl<T, A> Deref for Arc<T, A>
where A: Allocator, T: ?Sized,

source§

type Target = T

The resulting type after dereferencing.
source§

fn deref(&self) -> &T

Dereferences the value.
source§

impl<'de, T> Deserialize<'de> for Arc<T>
where Box<T>: Deserialize<'de>, T: ?Sized,

This impl requires the "rc" Cargo feature of Serde.

Deserializing a data structure containing Arc will not attempt to deduplicate Arc references to the same data. Every deserialized Arc will end up with a strong count of 1.

source§

fn deserialize<D>( deserializer: D, ) -> Result<Arc<T>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl<'de, T, U> DeserializeAs<'de, Arc<T>> for Arc<U>
where U: DeserializeAs<'de, T>,

source§

fn deserialize_as<D>( deserializer: D, ) -> Result<Arc<T>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer.
source§

impl<'de, T, U> DeserializeAs<'de, Arc<T>> for Arc<U>
where U: DeserializeAs<'de, T>,

source§

fn deserialize_as<D>( deserializer: D, ) -> Result<Arc<T>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer.
source§

impl<'de, T, U> DeserializeAs<'de, Pin<Arc<T>>> for Pin<Arc<U>>
where U: DeserializeAs<'de, T>,

source§

fn deserialize_as<D>( deserializer: D, ) -> Result<Pin<Arc<T>>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer.
1.0.0 · source§

impl<T, A> Display for Arc<T, A>
where T: Display + ?Sized, A: Allocator,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · source§

impl<T, A> Drop for Arc<T, A>
where A: Allocator, T: ?Sized,

source§

fn drop(&mut self)

Drops the Arc.

This will decrement the strong reference count. If the strong reference count reaches zero then the only other references (if any) are Weak, so we drop the inner value.

§Examples
use std::sync::Arc;

struct Foo;

impl Drop for Foo {
    fn drop(&mut self) {
        println!("dropped!");
    }
}

let foo  = Arc::new(Foo);
let foo2 = Arc::clone(&foo);

drop(foo);    // Doesn't print anything
drop(foo2);   // Prints "dropped!"
source§

impl<T> Encode for Arc<T>
where T: Encode + ?Sized,

source§

fn encode<E>(&self, encoder: &mut E) -> Result<(), EncodeError>
where E: Encoder,

Encode a given type.
1.52.0 · source§

impl<T> Error for Arc<T>
where T: Error + ?Sized,

source§

fn description(&self) -> &str

👎Deprecated since 1.42.0: use the Display impl or to_string()
source§

fn cause(&self) -> Option<&dyn Error>

👎Deprecated since 1.33.0: replaced by Error::source, which can support downcasting
source§

fn source(&self) -> Option<&(dyn Error + 'static)>

Returns the lower-level source of this error, if any. Read more
source§

fn provide<'a>(&'a self, req: &mut Request<'a>)

🔬This is a nightly-only experimental API. (error_generic_member_access)
Provides type-based access to context intended for error reports. Read more
source§

impl<T> EvalErrorReport for Arc<T>
where T: EvalErrorReport + ?Sized, Arc<T>: Clone + Send + Sync,

source§

fn report(&self, error: ExprError)

Perform the error reporting. Read more
§

impl ExecutionPlanProperties for Arc<dyn ExecutionPlan>

§

fn output_partitioning(&self) -> &Partitioning

Specifies how the output of this ExecutionPlan is split into partitions.
§

fn execution_mode(&self) -> ExecutionMode

Specifies whether this plan generates an infinite stream of records. If the plan does not support pipelining, but its input(s) are infinite, returns [ExecutionMode::PipelineBreaking] to indicate this.
§

fn output_ordering(&self) -> Option<&[PhysicalSortExpr]>

If the output of this ExecutionPlan within each partition is sorted, returns Some(keys) describing the ordering. A None return value indicates no assumptions should be made on the output ordering. Read more
§

fn equivalence_properties(&self) -> &EquivalenceProperties

Get the [EquivalenceProperties] within the plan. Read more
§

impl<Exe> Executor for Arc<Exe>
where Exe: Executor,

§

fn spawn(&self, f: Pin<Box<dyn Future<Output = ()> + Send>>) -> Result<(), ()>

spawns a new task
§

fn spawn_blocking<F, Res>(&self, f: F) -> JoinHandle<Res>
where F: FnOnce() -> Res + Send + 'static, Res: Send + 'static,

spawns a new blocking task
§

fn interval(&self, duration: Duration) -> Interval

returns a Stream that will produce at regular intervals
§

fn delay(&self, duration: Duration) -> Delay

waits for a configurable time
§

fn kind(&self) -> ExecutorKind

returns which executor is currently used
§

impl<S> Filter<S> for Arc<dyn Filter<S> + Sync + Send>

§

fn enabled(&self, meta: &Metadata<'_>, cx: &Context<'_, S>) -> bool

Returns true if this layer is interested in a span or event with the given Metadata in the current [Context], similarly to Subscriber::enabled. Read more
§

fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest

Returns an Interest indicating whether this layer will always, sometimes, or never be interested in the given Metadata. Read more
§

fn max_level_hint(&self) -> Option<LevelFilter>

Returns an optional hint of the highest verbosity level that this Filter will enable. Read more
§

fn event_enabled(&self, event: &Event<'_>, cx: &Context<'_, S>) -> bool

Called before the filtered [Layer]'s [on_event], to determine if on_event` should be called. Read more
§

fn on_new_span(&self, attrs: &Attributes<'_>, id: &Id, ctx: Context<'_, S>)

Notifies this filter that a new span was constructed with the given Attributes and Id. Read more
§

fn on_record(&self, id: &Id, values: &Record<'_>, ctx: Context<'_, S>)

Notifies this filter that a span with the given Id recorded the given values. Read more
§

fn on_enter(&self, id: &Id, ctx: Context<'_, S>)

Notifies this filter that a span with the given ID was entered. Read more
§

fn on_exit(&self, id: &Id, ctx: Context<'_, S>)

Notifies this filter that a span with the given ID was exited. Read more
§

fn on_close(&self, id: Id, ctx: Context<'_, S>)

Notifies this filter that a span with the given ID has been closed. Read more
1.21.0 · source§

impl<T> From<&[T]> for Arc<[T]>
where T: Clone,

source§

fn from(v: &[T]) -> Arc<[T]>

Allocates a reference-counted slice and fills it by cloning v’s items.

§Example
let original: &[i32] = &[1, 2, 3];
let shared: Arc<[i32]> = Arc::from(original);
assert_eq!(&[1, 2, 3], &shared[..]);
1.24.0 · source§

impl From<&CStr> for Arc<CStr>

source§

fn from(s: &CStr) -> Arc<CStr>

Converts a &CStr into a Arc<CStr>, by copying the contents into a newly allocated Arc.

1.24.0 · source§

impl From<&OsStr> for Arc<OsStr>

source§

fn from(s: &OsStr) -> Arc<OsStr>

Copies the string into a newly allocated Arc<OsStr>.

1.24.0 · source§

impl From<&Path> for Arc<Path>

source§

fn from(s: &Path) -> Arc<Path>

Converts a Path into an Arc by copying the Path data into a new Arc buffer.

§

impl From<&Path> for Arc<Path>

§

fn from(s: &Path) -> Arc<Path>

Converts a Path into a Rc by copying the Path data into a new Rc buffer.

1.21.0 · source§

impl From<&str> for Arc<str>

source§

fn from(v: &str) -> Arc<str>

Allocates a reference-counted str and copies v into it.

§Example
let shared: Arc<str> = Arc::from("eggplant");
assert_eq!("eggplant", &shared[..]);
1.74.0 · source§

impl<T, const N: usize> From<[T; N]> for Arc<[T]>

source§

fn from(v: [T; N]) -> Arc<[T]>

Converts a [T; N] into an Arc<[T]>.

The conversion moves the array into a newly allocated Arc.

§Example
let original: [i32; 3] = [1, 2, 3];
let shared: Arc<[i32]> = Arc::from(original);
assert_eq!(&[1, 2, 3], &shared[..]);
1.51.0 · source§

impl<W> From<Arc<W>> for Waker
where W: Wake + Send + Sync + 'static,

source§

fn from(waker: Arc<W>) -> Waker

Use a Wake-able type as a Waker.

No heap allocations or atomic operations are used for this conversion.

1.62.0 · source§

impl From<Arc<str>> for Arc<[u8]>

source§

fn from(rc: Arc<str>) -> Arc<[u8]>

Converts an atomically reference-counted string slice into a byte slice.

§Example
let string: Arc<str> = Arc::from("eggplant");
let bytes: Arc<[u8]> = Arc::from(string);
assert_eq!("eggplant".as_bytes(), bytes.as_ref());
1.21.0 · source§

impl<T, A> From<Box<T, A>> for Arc<T, A>
where A: Allocator, T: ?Sized,

source§

fn from(v: Box<T, A>) -> Arc<T, A>

Move a boxed object to a new, reference-counted allocation.

§Example
let unique: Box<str> = Box::from("eggplant");
let shared: Arc<str> = Arc::from(unique);
assert_eq!("eggplant", &shared[..]);
1.24.0 · source§

impl From<CString> for Arc<CStr>

source§

fn from(s: CString) -> Arc<CStr>

Converts a CString into an Arc<CStr> by moving the CString data into a new Arc buffer.

1.45.0 · source§

impl<'a, B> From<Cow<'a, B>> for Arc<B>
where B: ToOwned + ?Sized, Arc<B>: From<&'a B> + From<<B as ToOwned>::Owned>,

source§

fn from(cow: Cow<'a, B>) -> Arc<B>

Creates an atomically reference-counted pointer from a clone-on-write pointer by copying its content.

§Example
let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
let shared: Arc<str> = Arc::from(cow);
assert_eq!("eggplant", &shared[..]);
§

impl From<DFSchema> for Arc<Schema>

§

fn from(df_schema: DFSchema) -> Arc<Schema>

Converts to this type from the input type.
§

impl From<LimitExec> for Arc<dyn ExecutionPlan>

§

fn from(limit_exec: LimitExec) -> Arc<dyn ExecutionPlan>

Converts to this type from the input type.
source§

impl From<OpsMut> for Arc<[Op]>

source§

fn from(v: OpsMut) -> Arc<[Op]>

Converts to this type from the input type.
1.24.0 · source§

impl From<OsString> for Arc<OsStr>

source§

fn from(s: OsString) -> Arc<OsStr>

Converts an OsString into an Arc<OsStr> by moving the OsString data into a new Arc buffer.

1.24.0 · source§

impl From<PathBuf> for Arc<Path>

source§

fn from(s: PathBuf) -> Arc<Path>

Converts a PathBuf into an Arc<Path> by moving the PathBuf data into a new Arc buffer.

§

impl From<PathBuf> for Arc<Path>

§

fn from(s: PathBuf) -> Arc<Path>

Converts to this type from the input type.
1.21.0 · source§

impl From<String> for Arc<str>

source§

fn from(v: String) -> Arc<str>

Allocates a reference-counted str and copies v into it.

§Example
let unique: String = "eggplant".to_owned();
let shared: Arc<str> = Arc::from(unique);
assert_eq!("eggplant", &shared[..]);
1.6.0 · source§

impl<T> From<T> for Arc<T>

source§

fn from(t: T) -> Arc<T>

Converts a T into an Arc<T>

The conversion moves the value into a newly allocated Arc. It is equivalent to calling Arc::new(t).

§Example
let x = 5;
let arc = Arc::new(5);

assert_eq!(Arc::from(x), arc);
1.21.0 · source§

impl<T, A> From<Vec<T, A>> for Arc<[T], A>
where A: Allocator + Clone,

source§

fn from(v: Vec<T, A>) -> Arc<[T], A>

Allocates a reference-counted slice and moves v’s items into it.

§Example
let unique: Vec<i32> = vec![1, 2, 3];
let shared: Arc<[i32]> = Arc::from(unique);
assert_eq!(&[1, 2, 3], &shared[..]);
1.37.0 · source§

impl<T> FromIterator<T> for Arc<[T]>

source§

fn from_iter<I>(iter: I) -> Arc<[T]>
where I: IntoIterator<Item = T>,

Takes each element in the Iterator and collects it into an Arc<[T]>.

§Performance characteristics
§The general case

In the general case, collecting into Arc<[T]> is done by first collecting into a Vec<T>. That is, when writing the following:

let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();

this behaves as if we wrote:

let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
    .collect::<Vec<_>>() // The first set of allocations happens here.
    .into(); // A second allocation for `Arc<[T]>` happens here.

This will allocate as many times as needed for constructing the Vec<T> and then it will allocate once for turning the Vec<T> into the Arc<[T]>.

§Iterators of known length

When your Iterator implements TrustedLen and is of an exact size, a single allocation will be made for the Arc<[T]>. For example:

let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
§

impl<T> FromRedisValue for Arc<[T]>
where T: FromRedisValue,

§

fn from_redis_value(v: &Value) -> Result<Arc<[T]>, RedisError>

Given a redis Value this attempts to convert it into the given destination type. If that fails because it’s not compatible an appropriate error is generated.
§

fn from_owned_redis_value(v: Value) -> Result<Arc<[T]>, RedisError>

Given a redis Value this attempts to convert it into the given destination type. If that fails because it’s not compatible an appropriate error is generated.
§

fn from_redis_values(items: &[Value]) -> Result<Vec<Self>, RedisError>

Similar to from_redis_value but constructs a vector of objects from another vector of values. This primarily exists internally to customize the behavior for vectors of tuples.
§

fn from_owned_redis_values(items: Vec<Value>) -> Result<Vec<Self>, RedisError>

The same as from_redis_values, but takes a Vec<Value> instead of a &[Value].
§

fn from_byte_vec(_vec: &[u8]) -> Option<Vec<Self>>

Convert bytes to a single element vector.
§

fn from_owned_byte_vec(_vec: Vec<u8>) -> Result<Vec<Self>, RedisError>

Convert bytes to a single element vector.
§

impl FromValue for Arc<[u8]>

§

type Intermediate = Arc<[u8]>

§

fn from_value(v: Value) -> Self

Will panic if could not convert v to Self.
§

fn from_value_opt(v: Value) -> Result<Self, FromValueError>

Will return Err(Error::FromValueError(v)) if could not convert v to Self.
§

fn get_intermediate(v: Value) -> Result<Self::Intermediate, FromValueError>

Will return Err(Error::FromValueError(v)) if v is not convertible to Self.
§

impl FromValue for Arc<str>

§

type Intermediate = Arc<str>

§

fn from_value(v: Value) -> Self

Will panic if could not convert v to Self.
§

fn from_value_opt(v: Value) -> Result<Self, FromValueError>

Will return Err(Error::FromValueError(v)) if could not convert v to Self.
§

fn get_intermediate(v: Value) -> Result<Self::Intermediate, FromValueError>

Will return Err(Error::FromValueError(v)) if v is not convertible to Self.
§

impl<T> GaugeFn for Arc<T>
where T: GaugeFn,

§

fn increment(&self, value: f64)

Increments the gauge by the given amount.
§

fn decrement(&self, value: f64)

Decrements the gauge by the given amount.
§

fn set(&self, value: f64)

Sets the gauge to the given amount.
source§

impl GetObjectId for Arc<SstableObjectIdManager>

source§

fn get_new_sst_object_id<'life0, 'async_trait>( &'life0 mut self, ) -> Pin<Box<dyn Future<Output = Result<u64, HummockError>> + Send + 'async_trait>>
where 'life0: 'async_trait, Arc<SstableObjectIdManager>: 'async_trait,

Returns a new SST id. The id is guaranteed to be monotonic increasing.

1.0.0 · source§

impl<T, A> Hash for Arc<T, A>
where T: Hash + ?Sized, A: Allocator,

source§

fn hash<H>(&self, state: &mut H)
where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
§

impl<T> HistogramFn for Arc<T>
where T: HistogramFn,

§

fn record(&self, value: f64)

Records a value into the histogram.
§

impl<T> HttpFetch for Arc<T>
where T: HttpFetchDyn + ?Sized,

§

async fn fetch(&self, req: Request<Buffer>) -> Result<Response<HttpBody>, Error>

Fetch a request in async way.
§

impl<T> IntoOpaque for Arc<T>
where T: Send + Sync,

§

fn into_ptr(self) -> *mut c_void

Converts the object into a raw pointer.
§

unsafe fn from_ptr(ptr: *mut c_void) -> Arc<T>

Converts the raw pointer back to the original Rust object. Read more
§

impl<Sp> LocalSpawn for Arc<Sp>
where Sp: LocalSpawn + ?Sized,

§

fn spawn_local_obj( &self, future: LocalFutureObj<'static, ()>, ) -> Result<(), SpawnError>

Spawns a future that will be run to completion. Read more
§

fn status_local(&self) -> Result<(), SpawnError>

Determines whether the executor is able to spawn new tasks. Read more
§

impl LocationGenerator for Arc<FileLocationGenerator>

§

fn generate_name(&self) -> String

Generate a related file location for the writer.
source§

impl<T> Log for Arc<T>
where T: Log + ?Sized,

source§

fn enabled(&self, metadata: &Metadata<'_>) -> bool

Determines if a log message with the specified metadata would be logged. Read more
source§

fn log(&self, record: &Record<'_>)

Logs the Record. Read more
source§

fn flush(&self)

Flushes any buffered records. Read more
§

impl<'a, W> MakeWriter<'a> for Arc<W>
where &'a W: Write + 'a,

§

type Writer = &'a W

The concrete io::Write implementation returned by make_writer.
§

fn make_writer(&'a self) -> <Arc<W> as MakeWriter<'a>>::Writer

Returns an instance of Writer. Read more
§

fn make_writer_for(&'a self, meta: &Metadata<'_>) -> Self::Writer

Returns a Writer for writing data from the span or event described by the provided Metadata. Read more
§

impl ObjectStore for Arc<dyn ObjectStore>

§

fn put<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, payload: PutPayload, ) -> Pin<Box<dyn Future<Output = Result<PutResult, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Save the provided bytes to the specified location Read more
§

fn put_opts<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, payload: PutPayload, opts: PutOptions, ) -> Pin<Box<dyn Future<Output = Result<PutResult, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Save the provided payload to location with the given options
§

fn put_multipart<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, ) -> Pin<Box<dyn Future<Output = Result<Box<dyn MultipartUpload>, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Perform a multipart upload Read more
§

fn put_multipart_opts<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, opts: PutMultipartOpts, ) -> Pin<Box<dyn Future<Output = Result<Box<dyn MultipartUpload>, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Perform a multipart upload with options Read more
§

fn get<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, ) -> Pin<Box<dyn Future<Output = Result<GetResult, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Return the bytes that are stored at the specified location.
§

fn get_opts<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, options: GetOptions, ) -> Pin<Box<dyn Future<Output = Result<GetResult, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Perform a get request with options
§

fn get_range<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, range: Range<usize>, ) -> Pin<Box<dyn Future<Output = Result<Bytes, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Return the bytes that are stored at the specified location in the given byte range. Read more
§

fn get_ranges<'life0, 'life1, 'life2, 'async_trait>( &'life0 self, location: &'life1 Path, ranges: &'life2 [Range<usize>], ) -> Pin<Box<dyn Future<Output = Result<Vec<Bytes>, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, 'life2: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Return the bytes that are stored at the specified location in the given byte ranges
§

fn head<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, ) -> Pin<Box<dyn Future<Output = Result<ObjectMeta, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Return the metadata for the specified location
§

fn delete<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, ) -> Pin<Box<dyn Future<Output = Result<(), Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Delete the object at the specified location.
§

fn delete_stream<'a>( &'a self, locations: Pin<Box<dyn Stream<Item = Result<Path, Error>> + Send + 'a>>, ) -> Pin<Box<dyn Stream<Item = Result<Path, Error>> + Send + 'a>>

Delete all the objects at the specified locations Read more
§

fn list( &self, prefix: Option<&Path>, ) -> Pin<Box<dyn Stream<Item = Result<ObjectMeta, Error>> + Send + '_>>

List all the objects with the given prefix. Read more
§

fn list_with_offset( &self, prefix: Option<&Path>, offset: &Path, ) -> Pin<Box<dyn Stream<Item = Result<ObjectMeta, Error>> + Send + '_>>

List all the objects with the given prefix and a location greater than offset Read more
§

fn list_with_delimiter<'life0, 'life1, 'async_trait>( &'life0 self, prefix: Option<&'life1 Path>, ) -> Pin<Box<dyn Future<Output = Result<ListResult, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

List objects with the given prefix and an implementation specific delimiter. Returns common prefixes (directories) in addition to object metadata. Read more
§

fn copy<'life0, 'life1, 'life2, 'async_trait>( &'life0 self, from: &'life1 Path, to: &'life2 Path, ) -> Pin<Box<dyn Future<Output = Result<(), Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, 'life2: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Copy an object from one path to another in the same object store. Read more
§

fn rename<'life0, 'life1, 'life2, 'async_trait>( &'life0 self, from: &'life1 Path, to: &'life2 Path, ) -> Pin<Box<dyn Future<Output = Result<(), Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, 'life2: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Move an object from one path to another in the same object store. Read more
§

fn copy_if_not_exists<'life0, 'life1, 'life2, 'async_trait>( &'life0 self, from: &'life1 Path, to: &'life2 Path, ) -> Pin<Box<dyn Future<Output = Result<(), Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, 'life2: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Copy an object from one path to another, only if destination is empty. Read more
§

fn rename_if_not_exists<'life0, 'life1, 'life2, 'async_trait>( &'life0 self, from: &'life1 Path, to: &'life2 Path, ) -> Pin<Box<dyn Future<Output = Result<(), Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, 'life2: 'async_trait, Arc<dyn ObjectStore>: 'async_trait,

Move an object from one path to another in the same object store. Read more
1.0.0 · source§

impl<T, A> Ord for Arc<T, A>
where T: Ord + ?Sized, A: Allocator,

source§

fn cmp(&self, other: &Arc<T, A>) -> Ordering

Comparison for two Arcs.

The two are compared by calling cmp() on their inner values.

§Examples
use std::sync::Arc;
use std::cmp::Ordering;

let five = Arc::new(5);

assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
1.21.0 · source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
§

impl<U> OwnedRetriever<U> for Arc<RwLock<U>>
where U: Send + 'static,

§

fn view<T, F>(&self, f: F) -> Result<T, ()>
where F: FnOnce(&U) -> T,

§

fn unwrap(self) -> Result<U, ()>

§

impl<U> OwnedRetriever<U> for Arc<RwLock<U>>
where U: Send + 'static,

§

fn view<T, F>(&self, f: F) -> Result<T, ()>
where F: FnOnce(&U) -> T,

§

fn unwrap(self) -> Result<U, ()>

1.0.0 · source§

impl<T, A> PartialEq for Arc<T, A>
where T: PartialEq + ?Sized, A: Allocator,

source§

fn eq(&self, other: &Arc<T, A>) -> bool

Equality for two Arcs.

Two Arcs are equal if their inner values are equal, even if they are stored in different allocation.

If T also implements Eq (implying reflexivity of equality), two Arcs that point to the same allocation are always equal.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five == Arc::new(5));
source§

fn ne(&self, other: &Arc<T, A>) -> bool

Inequality for two Arcs.

Two Arcs are not equal if their inner values are not equal.

If T also implements Eq (implying reflexivity of equality), two Arcs that point to the same value are always equal.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five != Arc::new(6));
1.0.0 · source§

impl<T, A> PartialOrd for Arc<T, A>
where T: PartialOrd + ?Sized, A: Allocator,

source§

fn partial_cmp(&self, other: &Arc<T, A>) -> Option<Ordering>

Partial comparison for two Arcs.

The two are compared by calling partial_cmp() on their inner values.

§Examples
use std::sync::Arc;
use std::cmp::Ordering;

let five = Arc::new(5);

assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
source§

fn lt(&self, other: &Arc<T, A>) -> bool

Less-than comparison for two Arcs.

The two are compared by calling < on their inner values.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five < Arc::new(6));
source§

fn le(&self, other: &Arc<T, A>) -> bool

‘Less than or equal to’ comparison for two Arcs.

The two are compared by calling <= on their inner values.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five <= Arc::new(5));
source§

fn gt(&self, other: &Arc<T, A>) -> bool

Greater-than comparison for two Arcs.

The two are compared by calling > on their inner values.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five > Arc::new(4));
source§

fn ge(&self, other: &Arc<T, A>) -> bool

‘Greater than or equal to’ comparison for two Arcs.

The two are compared by calling >= on their inner values.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five >= Arc::new(5));
1.0.0 · source§

impl<T, A> Pointer for Arc<T, A>
where A: Allocator, T: ?Sized,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl ProvideCredentials for Arc<dyn ProvideCredentials>

§

fn provide_credentials<'a>(&'a self) -> ProvideCredentials<'a>
where Arc<dyn ProvideCredentials>: 'a,

Returns a future that provides credentials.
§

fn fallback_on_interrupt(&self) -> Option<Credentials>

Returns fallback credentials. Read more
source§

impl RangeKv for Arc<RwLock<RawRwLock, BTreeMap<FullKey<Bytes>, Option<Bytes>>>>

source§

fn range( &self, range: (Bound<FullKey<Bytes>>, Bound<FullKey<Bytes>>), limit: Option<usize>, ) -> Result<Vec<(FullKey<Bytes>, Option<Bytes>)>, StorageError>

source§

fn rev_range( &self, range: (Bound<FullKey<Bytes>>, Bound<FullKey<Bytes>>), limit: Option<usize>, ) -> Result<Vec<(FullKey<Bytes>, Option<Bytes>)>, StorageError>

source§

fn ingest_batch( &self, kv_pairs: impl Iterator<Item = (FullKey<Bytes>, Option<Bytes>)>, ) -> Result<(), StorageError>

source§

fn flush(&self) -> Result<(), StorageError>

1.73.0 · source§

impl Read for Arc<File>

source§

fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error>

Pull some bytes from this source into the specified buffer, returning how many bytes were read. Read more
source§

fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize, Error>

Like read, except that it reads into a slice of buffers. Read more
source§

fn read_buf(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error>

🔬This is a nightly-only experimental API. (read_buf)
Pull some bytes from this source into the specified buffer. Read more
source§

fn is_read_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Reader has an efficient read_vectored implementation. Read more
source§

fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize, Error>

Reads all bytes until EOF in this source, placing them into buf. Read more
source§

fn read_to_string(&mut self, buf: &mut String) -> Result<usize, Error>

Reads all bytes until EOF in this source, appending them to buf. Read more
1.6.0 · source§

fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error>

Reads the exact number of bytes required to fill buf. Read more
source§

fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error>

🔬This is a nightly-only experimental API. (read_buf)
Reads the exact number of bytes required to fill cursor. Read more
1.0.0 · source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adaptor for this instance of Read. Read more
1.0.0 · source§

fn bytes(self) -> Bytes<Self>
where Self: Sized,

Transforms this Read instance to an Iterator over its bytes. Read more
1.0.0 · source§

fn chain<R>(self, next: R) -> Chain<Self, R>
where R: Read, Self: Sized,

Creates an adapter which will chain this stream with another. Read more
1.0.0 · source§

fn take(self, limit: u64) -> Take<Self>
where Self: Sized,

Creates an adapter which will read at most limit bytes from it. Read more
§

impl<T> RefCnt for Arc<T>

§

type Base = T

The base type the pointer points to.
§

fn into_ptr(me: Arc<T>) -> *mut T

Converts the smart pointer into a raw pointer, without affecting the reference count. Read more
§

fn as_ptr(me: &Arc<T>) -> *mut T

Provides a view into the smart pointer as a raw pointer. Read more
§

unsafe fn from_ptr(ptr: *const T) -> Arc<T>

Converts a raw pointer back into the smart pointer, without affecting the reference count. Read more
§

fn inc(me: &Self) -> *mut Self::Base

Increments the reference count by one. Read more
§

unsafe fn dec(ptr: *const Self::Base)

Decrements the reference count by one. Read more
§

impl RowGroups for Arc<dyn FileReader>

§

fn num_rows(&self) -> usize

Get the number of rows in this collection
§

fn column_chunks( &self, column_index: usize, ) -> Result<Box<dyn PageIterator<Item = Result<Box<dyn PageReader<Item = Result<Page, ParquetError>>>, ParquetError>>>, ParquetError>

Returns a [PageIterator] for the column chunks with the given leaf column index
§

impl RowGroups for Arc<dyn FileReader>

§

fn num_rows(&self) -> usize

Get the number of rows in this collection
§

fn column_chunks( &self, column_index: usize, ) -> Result<Box<dyn PageIterator<Item = Result<Box<dyn PageReader<Item = Result<Page, ParquetError>>>, ParquetError>>>, ParquetError>

Returns a [PageIterator] for the column chunks with the given leaf column index
1.73.0 · source§

impl Seek for Arc<File>

source§

fn seek(&mut self, pos: SeekFrom) -> Result<u64, Error>

Seek to an offset, in bytes, in a stream. Read more
1.55.0 · source§

fn rewind(&mut self) -> Result<(), Error>

Rewind to the beginning of a stream. Read more
source§

fn stream_len(&mut self) -> Result<u64, Error>

🔬This is a nightly-only experimental API. (seek_stream_len)
Returns the length of this stream (in bytes). Read more
1.51.0 · source§

fn stream_position(&mut self) -> Result<u64, Error>

Returns the current seek position from the start of the stream. Read more
1.80.0 · source§

fn seek_relative(&mut self, offset: i64) -> Result<(), Error>

Seeks relative to the current position. Read more
source§

impl<T> Serialize for Arc<T>
where T: Serialize + ?Sized,

This impl requires the "rc" Cargo feature of Serde.

Serializing a data structure containing Arc will serialize a copy of the contents of the Arc each time the Arc is referenced within the data structure. Serialization will not attempt to deduplicate these repeated data.

source§

fn serialize<S>( &self, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl<T, U> SerializeAs<Arc<T>> for Arc<U>
where U: SerializeAs<T>,

source§

fn serialize_as<S>( source: &Arc<T>, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer.
source§

impl<T, U> SerializeAs<Arc<T>> for Arc<U>
where U: SerializeAs<T>,

source§

fn serialize_as<S>( source: &Arc<T>, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer.
source§

impl<T, U> SerializeAs<Pin<Arc<T>>> for Pin<Arc<U>>
where U: SerializeAs<T>,

source§

fn serialize_as<S>( source: &Pin<Arc<T>>, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer.
§

impl<Request, S> Service<Request> for Arc<S>
where S: Service<Request> + ?Sized,

§

type Response = <S as Service<Request>>::Response

Responses given by the service.
§

type Error = <S as Service<Request>>::Error

Errors produced by the service.
§

type Future = <S as Service<Request>>::Future

The future response value.
§

fn call(&self, req: Request) -> <Arc<S> as Service<Request>>::Future

Process the request and return the response asynchronously. call takes &self instead of mut &self because: Read more
source§

impl<S> Source for Arc<S>
where S: Source + ?Sized,

source§

fn visit<'kvs>( &'kvs self, visitor: &mut dyn VisitSource<'kvs>, ) -> Result<(), Error>

Visit key-values. Read more
source§

fn get(&self, key: Key<'_>) -> Option<Value<'_>>

Get the value for a given key. Read more
source§

fn count(&self) -> usize

Count the number of key-values that can be visited. Read more
§

impl<T> SourceCode for Arc<T>
where T: SourceCode + ?Sized,

§

fn read_span<'a>( &'a self, span: &SourceSpan, context_lines_before: usize, context_lines_after: usize, ) -> Result<Box<dyn SpanContents<'a> + 'a>, MietteError>

Read the bytes for a specific span from this SourceCode, keeping a certain number of lines before and after the span as context.
§

impl<Sp> Spawn for Arc<Sp>
where Sp: Spawn + ?Sized,

§

fn spawn_obj(&self, future: FutureObj<'static, ()>) -> Result<(), SpawnError>

Spawns a future that will be run to completion. Read more
§

fn status(&self) -> Result<(), SpawnError>

Determines whether the executor is able to spawn new tasks. Read more
§

impl<S> Subscriber for Arc<S>
where S: Subscriber + ?Sized,

§

fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest

Registers a new callsite with this subscriber, returning whether or not the subscriber is interested in being notified about the callsite. Read more
§

fn enabled(&self, metadata: &Metadata<'_>) -> bool

Returns true if a span or event with the specified metadata would be recorded. Read more
§

fn max_level_hint(&self) -> Option<LevelFilter>

Returns the highest verbosity level that this Subscriber will enable, or None, if the subscriber does not implement level-based filtering or chooses not to implement this method. Read more
§

fn new_span(&self, span: &Attributes<'_>) -> Id

Visit the construction of a new span, returning a new span ID for the span being constructed. Read more
§

fn record(&self, span: &Id, values: &Record<'_>)

Record a set of values on a span. Read more
§

fn record_follows_from(&self, span: &Id, follows: &Id)

Adds an indication that span follows from the span with the id follows. Read more
§

fn event_enabled(&self, event: &Event<'_>) -> bool

Determine if an [Event] should be recorded. Read more
§

fn event(&self, event: &Event<'_>)

Records that an Event has occurred. Read more
§

fn enter(&self, span: &Id)

Records that a span has been entered. Read more
§

fn exit(&self, span: &Id)

Records that a span has been exited. Read more
§

fn clone_span(&self, id: &Id) -> Id

Notifies the subscriber that a span ID has been cloned. Read more
§

fn try_close(&self, id: Id) -> bool

Notifies the subscriber that a span ID has been dropped, and returns true if there are now 0 IDs that refer to that span. Read more
§

fn drop_span(&self, id: Id)

👎Deprecated since 0.1.2: use Subscriber::try_close instead
This method is deprecated. Read more
§

fn current_span(&self) -> Current

Returns a type representing this subscriber’s view of the current span. Read more
§

unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()>

If self is the same type as the provided TypeId, returns an untyped *const pointer to that type. Otherwise, returns None. Read more
§

fn on_register_dispatch(&self, subscriber: &Dispatch)

Invoked when this subscriber becomes a [Dispatch]. Read more
§

impl ToDFSchema for Arc<Schema>

§

fn to_dfschema(self) -> Result<DFSchema, DataFusionError>

Attempt to create a DSSchema
§

fn to_dfschema_ref(self) -> Result<Arc<DFSchema>, DataFusionError>

Attempt to create a DSSchemaRef
§

impl<T> TreeNode for Arc<T>
where T: DynTreeNode + ?Sized,

Blanket implementation for any Arc<T> where T implements [DynTreeNode] (such as Arc<dyn PhysicalExpr>).

§

fn apply_children<'n, F>( &'n self, f: F, ) -> Result<TreeNodeRecursion, DataFusionError>
where F: FnMut(&'n Arc<T>) -> Result<TreeNodeRecursion, DataFusionError>,

Low-level API used to implement other APIs. Read more
§

fn map_children<F>(self, f: F) -> Result<Transformed<Arc<T>>, DataFusionError>
where F: FnMut(Arc<T>) -> Result<Transformed<Arc<T>>, DataFusionError>,

Low-level API used to implement other APIs. Read more
§

fn visit<'n, V>( &'n self, visitor: &mut V, ) -> Result<TreeNodeRecursion, DataFusionError>
where V: TreeNodeVisitor<'n, Node = Self>,

Visit the tree node with a [TreeNodeVisitor], performing a depth-first walk of the node and its children. Read more
§

fn rewrite<R>( self, rewriter: &mut R, ) -> Result<Transformed<Self>, DataFusionError>
where R: TreeNodeRewriter<Node = Self>,

Rewrite the tree node with a [TreeNodeRewriter], performing a depth-first walk of the node and its children. Read more
§

fn apply<'n, F>(&'n self, f: F) -> Result<TreeNodeRecursion, DataFusionError>
where F: FnMut(&'n Self) -> Result<TreeNodeRecursion, DataFusionError>,

Applies f to the node then each of its children, recursively (a top-down, pre-order traversal). Read more
§

fn transform<F>(self, f: F) -> Result<Transformed<Self>, DataFusionError>
where F: FnMut(Self) -> Result<Transformed<Self>, DataFusionError>,

Recursively rewrite the node’s children and then the node using f (a bottom-up post-order traversal). Read more
§

fn transform_down<F>(self, f: F) -> Result<Transformed<Self>, DataFusionError>
where F: FnMut(Self) -> Result<Transformed<Self>, DataFusionError>,

Recursively rewrite the tree using f in a top-down (pre-order) fashion. Read more
§

fn transform_down_mut<F>( self, f: &mut F, ) -> Result<Transformed<Self>, DataFusionError>
where F: FnMut(Self) -> Result<Transformed<Self>, DataFusionError>,

👎Deprecated since 38.0.0: Use transform_down instead
Same as [Self::transform_down] but with a mutable closure.
§

fn transform_up<F>(self, f: F) -> Result<Transformed<Self>, DataFusionError>
where F: FnMut(Self) -> Result<Transformed<Self>, DataFusionError>,

Recursively rewrite the node using f in a bottom-up (post-order) fashion. Read more
§

fn transform_up_mut<F>( self, f: &mut F, ) -> Result<Transformed<Self>, DataFusionError>
where F: FnMut(Self) -> Result<Transformed<Self>, DataFusionError>,

👎Deprecated since 38.0.0: Use transform_up instead
Same as [Self::transform_up] but with a mutable closure.
§

fn transform_down_up<FD, FU>( self, f_down: FD, f_up: FU, ) -> Result<Transformed<Self>, DataFusionError>
where FD: FnMut(Self) -> Result<Transformed<Self>, DataFusionError>, FU: FnMut(Self) -> Result<Transformed<Self>, DataFusionError>,

Transforms the node using f_down while traversing the tree top-down (pre-order), and using f_up while traversing the tree bottom-up (post-order). Read more
§

fn exists<F>(&self, f: F) -> Result<bool, DataFusionError>
where F: FnMut(&Self) -> Result<bool, DataFusionError>,

Returns true if f returns true for any node in the tree. Read more
1.43.0 · source§

impl<T, A, const N: usize> TryFrom<Arc<[T], A>> for Arc<[T; N], A>
where A: Allocator,

source§

type Error = Arc<[T], A>

The type returned in the event of a conversion error.
source§

fn try_from( boxed_slice: Arc<[T], A>, ) -> Result<Arc<[T; N], A>, <Arc<[T; N], A> as TryFrom<Arc<[T], A>>>::Error>

Performs the conversion.
§

impl TryFrom<DfSchema> for Arc<DFSchema>

§

type Error = Error

The type returned in the event of a conversion error.
§

fn try_from( df_schema: DfSchema, ) -> Result<Arc<DFSchema>, <Arc<DFSchema> as TryFrom<DfSchema>>::Error>

Performs the conversion.
§

impl TryFrom<Value> for Arc<[u8]>

§

type Error = FromValueError

The type returned in the event of a conversion error.
§

fn try_from(v: Value) -> Result<Arc<[u8]>, <Arc<[u8]> as TryFrom<Value>>::Error>

Performs the conversion.
§

impl TryFrom<Value> for Arc<str>

§

type Error = FromValueError

The type returned in the event of a conversion error.
§

fn try_from(v: Value) -> Result<Arc<str>, <Arc<str> as TryFrom<Value>>::Error>

Performs the conversion.
§

impl<T> ValueParserFactory for Arc<T>
where T: ValueParserFactory + Send + Sync + Clone, <T as ValueParserFactory>::Parser: TypedValueParser<Value = T>,

§

type Parser = MapValueParser<<T as ValueParserFactory>::Parser, fn(_: T) -> Arc<T>>

Generated parser, usually [ValueParser]. Read more
§

fn value_parser() -> <Arc<T> as ValueParserFactory>::Parser

Create the specified [Self::Parser]
source§

impl WithDataType for Arc<Bytes>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<Date>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<Decimal>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<Decimal>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<Int256>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<Interval>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<JsonbVal>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<OrderedFloat<f32>>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<OrderedFloat<f64>>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<Serial>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<String>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<Time>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<Timestamp>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<Timestamptz>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<Vec<u8>>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<bool>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<char>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<f32>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<f64>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<i16>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<i32>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
source§

impl WithDataType for Arc<i64>

source§

fn default_data_type() -> DataType

Returns the most obvious DataType for the rust type.
1.73.0 · source§

impl Write for Arc<File>

source§

fn write(&mut self, buf: &[u8]) -> Result<usize, Error>

Writes a buffer into this writer, returning how many bytes were written. Read more
source§

fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize, Error>

Like write, except that it writes from a slice of buffers. Read more
source§

fn is_write_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Writer has an efficient write_vectored implementation. Read more
source§

fn flush(&mut self) -> Result<(), Error>

Flushes this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
1.0.0 · source§

fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>

Attempts to write an entire buffer into this writer. Read more
source§

fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>

🔬This is a nightly-only experimental API. (write_all_vectored)
Attempts to write multiple buffers into this writer. Read more
1.0.0 · source§

fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result<(), Error>

Writes a formatted string into this writer, returning any error encountered. Read more
1.0.0 · source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Write. Read more
source§

impl<T, U, A> CoerceUnsized<Arc<U, A>> for Arc<T, A>
where T: Unsize<U> + ?Sized, A: Allocator, U: ?Sized,

source§

impl<T, A> DerefPure for Arc<T, A>
where A: Allocator, T: ?Sized,

source§

impl<T, U> DispatchFromDyn<Arc<U>> for Arc<T>
where T: Unsize<U> + ?Sized, U: ?Sized,

1.0.0 · source§

impl<T, A> Eq for Arc<T, A>
where T: Eq + ?Sized, A: Allocator,

source§

impl<T, A> PinCoerceUnsized for Arc<T, A>
where A: Allocator, T: ?Sized,

1.0.0 · source§

impl<T, A> Send for Arc<T, A>
where T: Sync + Send + ?Sized, A: Allocator + Send,

1.0.0 · source§

impl<T, A> Sync for Arc<T, A>
where T: Sync + Send + ?Sized, A: Allocator + Sync,

1.33.0 · source§

impl<T, A> Unpin for Arc<T, A>
where A: Allocator, T: ?Sized,

1.9.0 · source§

impl<T, A> UnwindSafe for Arc<T, A>

Auto Trait Implementations§

§

impl<T, A> Freeze for Arc<T, A>
where A: Freeze, T: ?Sized,

§

impl<T, A> RefUnwindSafe for Arc<T, A>

Blanket Implementations§

§

impl<T, A, P> Access<T> for P
where A: Access<T> + ?Sized, P: Deref<Target = A>,

§

type Guard = <A as Access<T>>::Guard

A guard object containing the value and keeping it alive. Read more
§

fn load(&self) -> <P as Access<T>>::Guard

The loading method. Read more
§

impl<A> AccessDyn for A
where A: Access<Reader = Box<dyn ReadDyn>, BlockingReader = Box<dyn BlockingRead>, Writer = Box<dyn WriteDyn>, BlockingWriter = Box<dyn BlockingWrite>, Lister = Box<dyn ListDyn>, BlockingLister = Box<dyn BlockingList>> + ?Sized,

§

fn info_dyn(&self) -> Arc<AccessorInfo>

Dyn version of Accessor::info
§

fn create_dir_dyn<'a>( &'a self, path: &'a str, args: OpCreateDir, ) -> Pin<Box<dyn Future<Output = Result<RpCreateDir, Error>> + Send + 'a>>

Dyn version of Accessor::create_dir
§

fn stat_dyn<'a>( &'a self, path: &'a str, args: OpStat, ) -> Pin<Box<dyn Future<Output = Result<RpStat, Error>> + Send + 'a>>

Dyn version of Accessor::stat
§

fn read_dyn<'a>( &'a self, path: &'a str, args: OpRead, ) -> Pin<Box<dyn Future<Output = Result<(RpRead, Box<dyn ReadDyn>), Error>> + Send + 'a>>

Dyn version of Accessor::read
§

fn write_dyn<'a>( &'a self, path: &'a str, args: OpWrite, ) -> Pin<Box<dyn Future<Output = Result<(RpWrite, Box<dyn WriteDyn>), Error>> + Send + 'a>>

Dyn version of Accessor::write
§

fn delete_dyn<'a>( &'a self, path: &'a str, args: OpDelete, ) -> Pin<Box<dyn Future<Output = Result<RpDelete, Error>> + Send + 'a>>

Dyn version of Accessor::delete
§

fn list_dyn<'a>( &'a self, path: &'a str, args: OpList, ) -> Pin<Box<dyn Future<Output = Result<(RpList, Box<dyn ListDyn>), Error>> + Send + 'a>>

Dyn version of Accessor::list
§

fn copy_dyn<'a>( &'a self, from: &'a str, to: &'a str, args: OpCopy, ) -> Pin<Box<dyn Future<Output = Result<RpCopy, Error>> + Send + 'a>>

Dyn version of Accessor::copy
§

fn rename_dyn<'a>( &'a self, from: &'a str, to: &'a str, args: OpRename, ) -> Pin<Box<dyn Future<Output = Result<RpRename, Error>> + Send + 'a>>

Dyn version of Accessor::rename
§

fn presign_dyn<'a>( &'a self, path: &'a str, args: OpPresign, ) -> Pin<Box<dyn Future<Output = Result<RpPresign, Error>> + Send + 'a>>

Dyn version of Accessor::presign
§

fn batch_dyn( &self, args: OpBatch, ) -> Pin<Box<dyn Future<Output = Result<RpBatch, Error>> + Send + '_>>

Dyn version of Accessor::batch
§

fn blocking_create_dir_dyn( &self, path: &str, args: OpCreateDir, ) -> Result<RpCreateDir, Error>

§

fn blocking_stat_dyn(&self, path: &str, args: OpStat) -> Result<RpStat, Error>

§

fn blocking_read_dyn( &self, path: &str, args: OpRead, ) -> Result<(RpRead, Box<dyn BlockingRead>), Error>

§

fn blocking_write_dyn( &self, path: &str, args: OpWrite, ) -> Result<(RpWrite, Box<dyn BlockingWrite>), Error>

§

fn blocking_delete_dyn( &self, path: &str, args: OpDelete, ) -> Result<RpDelete, Error>

§

fn blocking_list_dyn( &self, path: &str, args: OpList, ) -> Result<(RpList, Box<dyn BlockingList>), Error>

§

fn blocking_copy_dyn( &self, from: &str, to: &str, args: OpCopy, ) -> Result<RpCopy, Error>

§

fn blocking_rename_dyn( &self, from: &str, to: &str, args: OpRename, ) -> Result<RpRename, Error>

§

impl<A> AccessDyn for A
where A: Access<Reader = Box<dyn ReadDyn>, BlockingReader = Box<dyn BlockingRead>, Writer = Box<dyn WriteDyn>, BlockingWriter = Box<dyn BlockingWrite>, Lister = Box<dyn ListDyn>, BlockingLister = Box<dyn BlockingList>> + ?Sized,

§

fn info_dyn(&self) -> Arc<AccessorInfo>

Dyn version of Accessor::info
§

fn create_dir_dyn<'a>( &'a self, path: &'a str, args: OpCreateDir, ) -> Pin<Box<dyn Future<Output = Result<RpCreateDir, Error>> + Send + 'a>>

Dyn version of Accessor::create_dir
§

fn stat_dyn<'a>( &'a self, path: &'a str, args: OpStat, ) -> Pin<Box<dyn Future<Output = Result<RpStat, Error>> + Send + 'a>>

Dyn version of Accessor::stat
§

fn read_dyn<'a>( &'a self, path: &'a str, args: OpRead, ) -> Pin<Box<dyn Future<Output = Result<(RpRead, Box<dyn ReadDyn>), Error>> + Send + 'a>>

Dyn version of Accessor::read
§

fn write_dyn<'a>( &'a self, path: &'a str, args: OpWrite, ) -> Pin<Box<dyn Future<Output = Result<(RpWrite, Box<dyn WriteDyn>), Error>> + Send + 'a>>

Dyn version of Accessor::write
§

fn delete_dyn<'a>( &'a self, path: &'a str, args: OpDelete, ) -> Pin<Box<dyn Future<Output = Result<RpDelete, Error>> + Send + 'a>>

Dyn version of Accessor::delete
§

fn list_dyn<'a>( &'a self, path: &'a str, args: OpList, ) -> Pin<Box<dyn Future<Output = Result<(RpList, Box<dyn ListDyn>), Error>> + Send + 'a>>

Dyn version of Accessor::list
§

fn copy_dyn<'a>( &'a self, from: &'a str, to: &'a str, args: OpCopy, ) -> Pin<Box<dyn Future<Output = Result<RpCopy, Error>> + Send + 'a>>

Dyn version of Accessor::copy
§

fn rename_dyn<'a>( &'a self, from: &'a str, to: &'a str, args: OpRename, ) -> Pin<Box<dyn Future<Output = Result<RpRename, Error>> + Send + 'a>>

Dyn version of Accessor::rename
§

fn presign_dyn<'a>( &'a self, path: &'a str, args: OpPresign, ) -> Pin<Box<dyn Future<Output = Result<RpPresign, Error>> + Send + 'a>>

Dyn version of Accessor::presign
§

fn batch_dyn( &self, args: OpBatch, ) -> Pin<Box<dyn Future<Output = Result<RpBatch, Error>> + Send + '_>>

Dyn version of Accessor::batch
§

fn blocking_create_dir_dyn( &self, path: &str, args: OpCreateDir, ) -> Result<RpCreateDir, Error>

§

fn blocking_stat_dyn(&self, path: &str, args: OpStat) -> Result<RpStat, Error>

§

fn blocking_read_dyn( &self, path: &str, args: OpRead, ) -> Result<(RpRead, Box<dyn BlockingRead>), Error>

§

fn blocking_write_dyn( &self, path: &str, args: OpWrite, ) -> Result<(RpWrite, Box<dyn BlockingWrite>), Error>

§

fn blocking_delete_dyn( &self, path: &str, args: OpDelete, ) -> Result<RpDelete, Error>

§

fn blocking_list_dyn( &self, path: &str, args: OpList, ) -> Result<(RpList, Box<dyn BlockingList>), Error>

§

fn blocking_copy_dyn( &self, from: &str, to: &str, args: OpCopy, ) -> Result<RpCopy, Error>

§

fn blocking_rename_dyn( &self, from: &str, to: &str, args: OpRename, ) -> Result<RpRename, Error>

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<A, T> AsBits<T> for A
where A: AsRef<[T]>, T: BitStore,

§

fn as_bits<O>(&self) -> &BitSlice<T, O>
where O: BitOrder,

Views self as an immutable bit-slice region with the O ordering.
§

fn try_as_bits<O>(&self) -> Result<&BitSlice<T, O>, BitSpanError<T>>
where O: BitOrder,

Attempts to view self as an immutable bit-slice region with the O ordering. Read more
§

impl<T> AsDyn for T
where T: Error,

§

fn as_dyn(&self) -> &dyn Error

Casts the error to a trait object.
§

impl<T> AsErrorSource for T
where T: Error + 'static,

§

fn as_error_source(&self) -> &(dyn Error + 'static)

For maximum effectiveness, this needs to be called as a method to benefit from Rust’s automatic dereferencing of method receivers.
§

impl<T> AsFilelike for T
where T: AsFd,

§

fn as_filelike(&self) -> BorrowedFd<'_>

Borrows the reference. Read more
§

fn as_filelike_view<Target>(&self) -> FilelikeView<'_, Target>
where Target: FilelikeViewType,

Return a borrowing view of a resource which dereferences to a &Target. Read more
§

impl<T> AsRawFilelike for T
where T: AsRawFd,

§

fn as_raw_filelike(&self) -> i32

Returns the raw value.
§

impl<T> AsRawSocketlike for T
where T: AsRawFd,

§

fn as_raw_socketlike(&self) -> i32

Returns the raw value.
§

impl<T> AsReport for T
where T: Error,

§

fn as_report(&self) -> Report<'_>

Returns a [Report] that formats the error and its sources in a cleaned-up way. Read more
§

fn to_report_string(&self) -> String

Converts the error to a [Report] and formats it in a compact way. Read more
§

fn to_report_string_with_backtrace(&self) -> String

Converts the error to a [Report] and formats it in a compact way, including backtraces if available. Read more
§

fn to_report_string_pretty(&self) -> String

Converts the error to a [Report] and formats it in a pretty way. Read more
§

fn to_report_string_pretty_with_backtrace(&self) -> String

Converts the error to a [Report] and formats it in a pretty way, Read more
§

impl<T> AsSocketlike for T
where T: AsFd,

§

fn as_socketlike(&self) -> BorrowedFd<'_>

Borrows the reference.
§

fn as_socketlike_view<Target>(&self) -> SocketlikeView<'_, Target>
where Target: SocketlikeViewType,

Return a borrowing view of a resource which dereferences to a &Target. Read more
§

impl<T> AsSource for T
where T: AsFd,

§

fn source(&self) -> BorrowedFd<'_>

Returns the borrowed file descriptor.
§

impl<T> AsUncased for T
where T: AsRef<str> + ?Sized,

§

fn as_uncased(&self) -> &UncasedStr

Convert self to an [UncasedStr].
§

impl<S> Bind for S
where S: Serialize,

§

fn write(&self, dst: impl Write) -> Result<(), String>

source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<Q, K> Comparable<K> for Q
where Q: Ord + ?Sized, K: Borrow<Q> + ?Sized,

§

fn compare(&self, key: &K) -> Ordering

Compare self to key and return their ordering.
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<Choices> CoproductSubsetter<CNil, HNil> for Choices

§

type Remainder = Choices

§

fn subset( self, ) -> Result<CNil, <Choices as CoproductSubsetter<CNil, HNil>>::Remainder>

Extract a subset of the possible types in a coproduct (or get the remaining possibilities) Read more
§

impl<T> Datum for T
where T: Array,

§

fn get(&self) -> (&dyn Array, bool)

Returns the value for this [Datum] and a boolean indicating if the value is scalar
§

impl<T> Datum for T
where T: Array,

§

fn get(&self) -> (&dyn Array, bool)

Returns the value for this [Datum] and a boolean indicating if the value is scalar
§

impl<T> Datum for T
where T: Array,

§

fn get(&self) -> (&dyn Array, bool)

Returns the value for this [Datum] and a boolean indicating if the value is scalar
§

impl<'local, T> Desc<'local, JClass<'local>> for T
where T: Into<JNIString>,

§

type Output = AutoLocal<'local, JClass<'local>>

The type that this Desc returns.
§

fn lookup( self, env: &mut JNIEnv<'local>, ) -> Result<<T as Desc<'local, JClass<'local>>>::Output, Error>

Look up the concrete type from the JVM. Read more
§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
§

impl<T, A> DynAccess<T> for A
where A: Access<T>, <A as Access<T>>::Guard: 'static,

§

fn load(&self) -> DynGuard<T>

The equivalent of [Access::load].
source§

impl<T> DynClone for T
where T: Clone,

§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
source§

impl<T> ErrorIsFromTonicServerImpl for T
where T: Error + ?Sized,

source§

fn is_from_tonic_server_impl(&self) -> bool

Returns whether the error is from the implementation of a tonic server, i.e., created with ToTonicStatus::to_status. Read more
§

impl<T> ExecutableCommand for T
where T: Write + ?Sized,

§

fn execute(&mut self, command: impl Command) -> Result<&mut T, Error>

Executes the given command directly.

The given command its ANSI escape code will be written and flushed onto Self.

§Arguments
  • Command

    The command that you want to execute directly.

§Example
use std::io;
use crossterm::{ExecutableCommand, style::Print};

fn main() -> io::Result<()> {
     // will be executed directly
      io::stdout()
        .execute(Print("sum:\n".to_string()))?
        .execute(Print(format!("1 + 1= {} ", 1 + 1)))?;

      Ok(())

     // ==== Output ====
     // sum:
     // 1 + 1 = 2
}

Have a look over at the Command API for more details.

§Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.
§

impl<P> ExprSchema for P
where P: AsRef<DFSchema> + Debug,

§

fn nullable(&self, col: &Column) -> Result<bool, DataFusionError>

Is this column reference nullable?
§

fn data_type(&self, col: &Column) -> Result<&DataType, DataFusionError>

What is the datatype of this column?
§

fn metadata( &self, col: &Column, ) -> Result<&HashMap<String, String>, DataFusionError>

Returns the column’s optional metadata.
§

fn data_type_and_nullable( &self, col: &Column, ) -> Result<(&DataType, bool), DataFusionError>

Return the coulmn’s datatype and nullability
§

impl<F, S> FilterExt<S> for F
where F: Filter<S>,

§

fn and<B>(self, other: B) -> And<Self, B, S>
where Self: Sized, B: Filter<S>,

Combines this Filter with another Filter s so that spans and events are enabled if and only if both filters return true. Read more
§

fn or<B>(self, other: B) -> Or<Self, B, S>
where Self: Sized, B: Filter<S>,

Combines two Filters so that spans and events are enabled if either filter returns true. Read more
§

fn not(self) -> Not<Self, S>
where Self: Sized,

Inverts self, returning a filter that enables spans and events only if self would not enable them. Read more
§

fn boxed(self) -> Box<dyn Filter<S> + Sync + Send>
where Self: Sized + Send + Sync + 'static,

Boxes self, erasing its concrete type. Read more
§

impl<R> FixedIntReader for R
where R: Read,

§

fn read_fixedint<FI>(&mut self) -> Result<FI, Error>
where FI: FixedInt,

Read a fixed integer from a reader. How many bytes are read depends on FI. Read more
§

impl<W> FixedIntWriter for W
where W: Write,

§

fn write_fixedint<FI>(&mut self, n: FI) -> Result<usize, Error>
where FI: FixedInt,

§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
source§

impl<T> From<!> for T

source§

fn from(t: !) -> T

Converts to this type from the input type.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> FromFd for T
where T: From<OwnedFd>,

§

fn from_fd(owned_fd: OwnedFd) -> T

👎Deprecated since 1.0.0: FromFd::from_fd is replaced by From<OwnedFd>::from
Constructs a new instance of Self from the given file descriptor. Read more
§

fn from_into_fd<Owned>(into_owned: Owned) -> Self
where Owned: Into<OwnedFd>, Self: Sized + From<OwnedFd>,

Constructs a new instance of Self from the given file descriptor converted from into_owned. Read more
§

impl<T> FromFilelike for T
where T: From<OwnedFd>,

§

fn from_filelike(owned: OwnedFd) -> T

Constructs a new instance of Self from the given filelike object. Read more
§

fn from_into_filelike<Owned>(owned: Owned) -> T
where Owned: IntoFilelike,

Constructs a new instance of Self from the given filelike object converted from into_owned. Read more
§

impl<T> FromRef<T> for T
where T: Clone,

§

fn from_ref(input: &T) -> T

Converts to this type from a reference to the input type.
§

impl<T> FromRow for T
where T: FromValue,

§

fn from_row_opt(row: Row) -> Result<T, FromRowError>

§

fn from_row(row: Row) -> Self
where Self: Sized,

§

impl<T> FromSocketlike for T
where T: From<OwnedFd>,

§

fn from_socketlike(owned: OwnedFd) -> T

Constructs a new instance of Self from the given socketlike object.
§

fn from_into_socketlike<Owned>(owned: Owned) -> T
where Owned: IntoSocketlike,

Constructs a new instance of Self from the given socketlike object converted from into_owned.
§

impl<T> FutureExt for T

§

fn with_context(self, otel_cx: Context) -> WithContext<Self>

Attaches the provided Context to this type, returning a WithContext wrapper. Read more
§

fn with_current_context(self) -> WithContext<Self>

Attaches the current Context to this type, returning a WithContext wrapper. Read more
§

impl<T, B1, B2> HttpService<B1> for T
where T: Service<Request<B1>, Response = Response<B2>>, B2: Body, <T as Service<Request<B1>>>::Error: Into<Box<dyn Error + Sync + Send>>,

§

type ResBody = B2

The Body body of the http::Response.
§

type Error = <T as Service<Request<B1>>>::Error

The error type that can occur within this Service. Read more
§

type Future = <T as Service<Request<B1>>>::Future

The Future returned by this Service.
§

fn call(&mut self, req: Request<B1>) -> <T as HttpService<B1>>::Future

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<T> IntoRequest<T> for T

source§

fn into_request(self) -> Request<T>

Wrap the input message T in a tonic::Request
§

impl<T> IntoResult<T> for T

§

type Err = Infallible

§

fn into_result(self) -> Result<T, <T as IntoResult<T>>::Err>

§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
§

impl<S> IsTty for S
where S: AsRawFd,

§

fn is_tty(&self) -> bool

Returns true when an instance is a terminal teletype, otherwise false.
§

impl<T, U, I> LiftInto<U, I> for T
where U: LiftFrom<T, I>,

§

fn lift_into(self) -> U

Performs the indexed conversion.
§

impl<Sp> LocalSpawnExt for Sp
where Sp: LocalSpawn + ?Sized,

§

fn spawn_local<Fut>(&self, future: Fut) -> Result<(), SpawnError>
where Fut: Future<Output = ()> + 'static,

Spawns a task that polls the given future with output () to completion. Read more
§

fn spawn_local_with_handle<Fut>( &self, future: Fut, ) -> Result<RemoteHandle<<Fut as Future>::Output>, SpawnError>
where Fut: Future + 'static,

Spawns a task that polls the given future to completion and returns a future that resolves to the spawned future’s output. Read more
§

impl<'a, M> MakeWriterExt<'a> for M
where M: MakeWriter<'a>,

§

fn with_max_level(self, level: Level) -> WithMaxLevel<Self>
where Self: Sized,

Wraps self and returns a [MakeWriter] that will only write output for events at or below the provided verbosity Level. For instance, Level::TRACE is considered to be _more verbosethanLevel::INFO`. Read more
§

fn with_min_level(self, level: Level) -> WithMinLevel<Self>
where Self: Sized,

Wraps self and returns a [MakeWriter] that will only write output for events at or above the provided verbosity Level. Read more
§

fn with_filter<F>(self, filter: F) -> WithFilter<Self, F>
where Self: Sized, F: Fn(&Metadata<'_>) -> bool,

Wraps self with a predicate that takes a span or event’s Metadata and returns a bool. The returned [MakeWriter]’s MakeWriter::make_writer_for method will check the predicate to determine if a writer should be produced for a given span or event. Read more
§

fn and<B>(self, other: B) -> Tee<Self, B>
where Self: Sized, B: MakeWriter<'a>,

Combines self with another type implementing [MakeWriter], returning a new [MakeWriter] that produces writers that write to both outputs. Read more
§

fn or_else<W, B>(self, other: B) -> OrElse<Self, B>
where Self: Sized + MakeWriter<'a, Writer = EitherWriter<W, Sink>>, B: MakeWriter<'a>, W: Write,

Combines self with another type implementing [MakeWriter], returning a new [MakeWriter] that calls other’s make_writer if self’s make_writer returns OptionalWriter::none. Read more
source§

impl<M> MetricVecRelabelExt for M

source§

fn relabel( self, metric_level: MetricLevel, relabel_threshold: MetricLevel, ) -> RelabeledMetricVec<M>

source§

fn relabel_n( self, metric_level: MetricLevel, relabel_threshold: MetricLevel, relabel_num: usize, ) -> RelabeledMetricVec<M>

source§

fn relabel_debug_1( self, relabel_threshold: MetricLevel, ) -> RelabeledMetricVec<M>

Equivalent to RelabeledMetricVec::with_metric_level_relabel_n with metric_level set to MetricLevel::Debug and relabel_num set to 1.
§

impl<T> ObjectStoreRetryExt for T
where T: ObjectStore + ?Sized,

§

fn put_with_retries<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, bytes: PutPayload, max_retries: usize, ) -> Pin<Box<dyn Future<Output = Result<PutResult, Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Self: Sync + 'async_trait,

Save the provided bytes to the specified location Read more
§

fn delete_with_retries<'life0, 'life1, 'async_trait>( &'life0 self, location: &'life1 Path, max_retries: usize, ) -> Pin<Box<dyn Future<Output = Result<(), Error>> + Send + 'async_trait>>
where 'life0: 'async_trait, 'life1: 'async_trait, Self: Sync + 'async_trait,

Delete the object at the specified location
§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> PrettyHex for T
where T: AsRef<[u8]> + ?Sized,

§

fn hex_dump(&self) -> Hex<'_, T>

Wrap self reference for use in std::fmt::Display and std::fmt::Debug formatting as hex dumps.
§

fn hex_conf(&self, cfg: HexConfig) -> Hex<'_, T>

Wrap self reference for use in std::fmt::Display and std::fmt::Debug formatting as hex dumps in specified format.
§

impl<Q> Query for Q
where Q: AsQuery,

§

type Protocol = TextProtocol

Query protocol.
§

fn run<'a, 't, C>( self, conn: C, ) -> Pin<Box<dyn Future<Output = Result<QueryResult<'a, 't, TextProtocol>, Error>> + Send + 'a>>
where 't: 'a, Q: 'a, C: ToConnection<'a, 't> + 'a,

This method corresponds to Queryable::query_iter.
§

fn first<'a, 't, T, C>( self, conn: C, ) -> Pin<Box<dyn Future<Output = Result<Option<T>, Error>> + Send + 'a>>
where 't: 'a, Self: 'a, C: ToConnection<'a, 't> + 'a, T: FromRow + Send + 'static,

This methods corresponds to Queryable::query_first.
§

fn fetch<'a, 't, T, C>( self, conn: C, ) -> Pin<Box<dyn Future<Output = Result<Vec<T>, Error>> + Send + 'a>>
where 't: 'a, Self: 'a, C: ToConnection<'a, 't> + 'a, T: FromRow + Send + 'static,

This methods corresponds to Queryable::query.
§

fn reduce<'a, 't, T, U, F, C>( self, conn: C, init: U, next: F, ) -> Pin<Box<dyn Future<Output = Result<U, Error>> + Send + 'a>>
where 't: 'a, Self: 'a, C: ToConnection<'a, 't> + 'a, F: FnMut(U, T) -> U + Send + 'a, T: FromRow + Send + 'static, U: Send + 'a,

This methods corresponds to Queryable::query_fold.
§

fn map<'a, 't, T, U, F, C>( self, conn: C, map: F, ) -> Pin<Box<dyn Future<Output = Result<Vec<U>, Error>> + Send + 'a>>
where 't: 'a, Self: 'a, C: ToConnection<'a, 't> + 'a, F: FnMut(T) -> U + Send + 'a, T: FromRow + Send + 'static, U: Send + 'a,

This methods corresponds to Queryable::query_map.
§

fn stream<'a, 't, T, C>( self, conn: C, ) -> Pin<Box<dyn Future<Output = Result<ResultSetStream<'a, 'a, 't, T, Self::Protocol>, Error>> + Send + 'a>>
where 't: 'a, Self: 'a, Self::Protocol: Unpin, T: Unpin + FromRow + Send + 'static, C: ToConnection<'a, 't> + 'a,

Returns a stream over the first result set. Read more
§

fn ignore<'a, 't, C>( self, conn: C, ) -> Pin<Box<dyn Future<Output = Result<(), Error>> + Send + 'a>>
where 't: 'a, Self: 'a, C: ToConnection<'a, 't> + 'a,

This method corresponds to Queryable::query_drop.
§

impl<T> QueueableCommand for T
where T: Write + ?Sized,

§

fn queue(&mut self, command: impl Command) -> Result<&mut T, Error>

Queues the given command for further execution.

Queued commands will be executed in the following cases:

  • When flush is called manually on the given type implementing io::Write.
  • The terminal will flush automatically if the buffer is full.
  • Each line is flushed in case of stdout, because it is line buffered.
§Arguments
  • Command

    The command that you want to queue for later execution.

§Examples
use std::io::{self, Write};
use crossterm::{QueueableCommand, style::Print};

 fn main() -> io::Result<()> {
    let mut stdout = io::stdout();

    // `Print` will executed executed when `flush` is called.
    stdout
        .queue(Print("foo 1\n".to_string()))?
        .queue(Print("foo 2".to_string()))?;

    // some other code (no execution happening here) ...

    // when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
    stdout.flush()?;

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}

Have a look over at the Command API for more details.

§Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.
§

impl<R> ReadBytesExt for R
where R: Read + ?Sized,

§

fn read_u8(&mut self) -> Result<u8, Error>

Reads an unsigned 8 bit integer from the underlying reader. Read more
§

fn read_i8(&mut self) -> Result<i8, Error>

Reads a signed 8 bit integer from the underlying reader. Read more
§

fn read_u16<T>(&mut self) -> Result<u16, Error>
where T: ByteOrder,

Reads an unsigned 16 bit integer from the underlying reader. Read more
§

fn read_i16<T>(&mut self) -> Result<i16, Error>
where T: ByteOrder,

Reads a signed 16 bit integer from the underlying reader. Read more
§

fn read_u24<T>(&mut self) -> Result<u32, Error>
where T: ByteOrder,

Reads an unsigned 24 bit integer from the underlying reader. Read more
§

fn read_i24<T>(&mut self) -> Result<i32, Error>
where T: ByteOrder,

Reads a signed 24 bit integer from the underlying reader. Read more
§

fn read_u32<T>(&mut self) -> Result<u32, Error>
where T: ByteOrder,

Reads an unsigned 32 bit integer from the underlying reader. Read more
§

fn read_i32<T>(&mut self) -> Result<i32, Error>
where T: ByteOrder,

Reads a signed 32 bit integer from the underlying reader. Read more
§

fn read_u48<T>(&mut self) -> Result<u64, Error>
where T: ByteOrder,

Reads an unsigned 48 bit integer from the underlying reader. Read more
§

fn read_i48<T>(&mut self) -> Result<i64, Error>
where T: ByteOrder,

Reads a signed 48 bit integer from the underlying reader. Read more
§

fn read_u64<T>(&mut self) -> Result<u64, Error>
where T: ByteOrder,

Reads an unsigned 64 bit integer from the underlying reader. Read more
§

fn read_i64<T>(&mut self) -> Result<i64, Error>
where T: ByteOrder,

Reads a signed 64 bit integer from the underlying reader. Read more
§

fn read_u128<T>(&mut self) -> Result<u128, Error>
where T: ByteOrder,

Reads an unsigned 128 bit integer from the underlying reader. Read more
§

fn read_i128<T>(&mut self) -> Result<i128, Error>
where T: ByteOrder,

Reads a signed 128 bit integer from the underlying reader. Read more
§

fn read_uint<T>(&mut self, nbytes: usize) -> Result<u64, Error>
where T: ByteOrder,

Reads an unsigned n-bytes integer from the underlying reader. Read more
§

fn read_int<T>(&mut self, nbytes: usize) -> Result<i64, Error>
where T: ByteOrder,

Reads a signed n-bytes integer from the underlying reader. Read more
§

fn read_uint128<T>(&mut self, nbytes: usize) -> Result<u128, Error>
where T: ByteOrder,

Reads an unsigned n-bytes integer from the underlying reader.
§

fn read_int128<T>(&mut self, nbytes: usize) -> Result<i128, Error>
where T: ByteOrder,

Reads a signed n-bytes integer from the underlying reader.
§

fn read_f32<T>(&mut self) -> Result<f32, Error>
where T: ByteOrder,

Reads a IEEE754 single-precision (4 bytes) floating point number from the underlying reader. Read more
§

fn read_f64<T>(&mut self) -> Result<f64, Error>
where T: ByteOrder,

Reads a IEEE754 double-precision (8 bytes) floating point number from the underlying reader. Read more
§

fn read_u16_into<T>(&mut self, dst: &mut [u16]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of unsigned 16 bit integers from the underlying reader. Read more
§

fn read_u32_into<T>(&mut self, dst: &mut [u32]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of unsigned 32 bit integers from the underlying reader. Read more
§

fn read_u64_into<T>(&mut self, dst: &mut [u64]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of unsigned 64 bit integers from the underlying reader. Read more
§

fn read_u128_into<T>(&mut self, dst: &mut [u128]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of unsigned 128 bit integers from the underlying reader. Read more
§

fn read_i8_into(&mut self, dst: &mut [i8]) -> Result<(), Error>

Reads a sequence of signed 8 bit integers from the underlying reader. Read more
§

fn read_i16_into<T>(&mut self, dst: &mut [i16]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of signed 16 bit integers from the underlying reader. Read more
§

fn read_i32_into<T>(&mut self, dst: &mut [i32]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of signed 32 bit integers from the underlying reader. Read more
§

fn read_i64_into<T>(&mut self, dst: &mut [i64]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of signed 64 bit integers from the underlying reader. Read more
§

fn read_i128_into<T>(&mut self, dst: &mut [i128]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of signed 128 bit integers from the underlying reader. Read more
§

fn read_f32_into<T>(&mut self, dst: &mut [f32]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of IEEE754 single-precision (4 bytes) floating point numbers from the underlying reader. Read more
§

fn read_f32_into_unchecked<T>(&mut self, dst: &mut [f32]) -> Result<(), Error>
where T: ByteOrder,

👎Deprecated since 1.2.0: please use read_f32_into instead
DEPRECATED. Read more
§

fn read_f64_into<T>(&mut self, dst: &mut [f64]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of IEEE754 double-precision (8 bytes) floating point numbers from the underlying reader. Read more
§

fn read_f64_into_unchecked<T>(&mut self, dst: &mut [f64]) -> Result<(), Error>
where T: ByteOrder,

👎Deprecated since 1.2.0: please use read_f64_into instead
DEPRECATED. Read more
§

impl<T> ReadMysqlExt for T
where T: ReadBytesExt,

§

fn read_lenenc_int(&mut self) -> Result<u64, Error>

Reads MySql’s length-encoded integer.
§

fn read_lenenc_str(&mut self) -> Result<Vec<u8>, Error>

Reads MySql’s length-encoded string.
source§

impl<T> Same for T

source§

type Output = T

Should always be Self
§

impl<Source> Sculptor<HNil, HNil> for Source

§

type Remainder = Source

§

fn sculpt(self) -> (HNil, <Source as Sculptor<HNil, HNil>>::Remainder)

Consumes the current HList and returns an HList with the requested shape. Read more
source§

impl<T> SerTo<T> for T

§

impl<T> Source for T
where T: Deref, <T as Deref>::Target: Source,

§

type Slice<'a> = <<T as Deref>::Target as Source>::Slice<'a> where T: 'a

A type this Source can be sliced into.
§

fn len(&self) -> usize

Length of the source
§

fn read<'a, Chunk>(&'a self, offset: usize) -> Option<Chunk>
where Chunk: Chunk<'a>,

Read a chunk of bytes into an array. Returns None when reading out of bounds would occur. Read more
§

unsafe fn read_byte_unchecked(&self, offset: usize) -> u8

Read a byte without doing bounds checks. Read more
§

fn slice(&self, range: Range<usize>) -> Option<<T as Source>::Slice<'_>>

Get a slice of the source at given range. This is analogous to slice::get(range). Read more
§

unsafe fn slice_unchecked( &self, range: Range<usize>, ) -> <T as Source>::Slice<'_>

Get a slice of the source at given range. This is analogous to slice::get_unchecked(range). Read more
§

fn is_boundary(&self, index: usize) -> bool

Check if index is valid for this Source, that is: Read more
§

fn find_boundary(&self, index: usize) -> usize

For &str sources attempts to find the closest char boundary at which source can be sliced, starting from index. Read more
§

impl<Sp> SpawnExt for Sp
where Sp: Spawn + ?Sized,

§

fn spawn<Fut>(&self, future: Fut) -> Result<(), SpawnError>
where Fut: Future<Output = ()> + Send + 'static,

Spawns a task that polls the given future with output () to completion. Read more
§

fn spawn_with_handle<Fut>( &self, future: Fut, ) -> Result<RemoteHandle<<Fut as Future>::Output>, SpawnError>
where Fut: Future + Send + 'static, <Fut as Future>::Output: Send,

Spawns a task that polls the given future to completion and returns a future that resolves to the spawned future’s output. Read more
§

impl<S> SubscriberExt for S
where S: Subscriber,

§

fn with<L>(self, layer: L) -> Layered<L, Self>
where L: Layer<Self>, Self: Sized,

Wraps self with the provided layer.
§

impl<T> SubscriberInitExt for T
where T: Into<Dispatch>,

§

fn set_default(self) -> DefaultGuard

Sets self as the default subscriber in the current scope, returning a guard that will unset it when dropped. Read more
§

fn try_init(self) -> Result<(), TryInitError>

Attempts to set self as the global default subscriber in the current scope, returning an error if one is already set. Read more
§

fn init(self)

Attempts to set self as the global default subscriber in the current scope, panicking if this fails. Read more
§

impl<W> SynchronizedUpdate for W
where W: Write + ?Sized,

§

fn sync_update<T>( &mut self, operations: impl FnOnce(&mut W) -> T, ) -> Result<T, Error>

Performs a set of actions within a synchronous update.

Updates will be suspended in the terminal, the function will be executed against self, updates will be resumed, and a flush will be performed.

§Arguments
  • Function

    A function that performs the operations that must execute in a synchronized update.

§Examples
use std::io;
use crossterm::{ExecutableCommand, SynchronizedUpdate, style::Print};

fn main() -> io::Result<()> {
    let mut stdout = io::stdout();

    stdout.sync_update(|stdout| {
        stdout.execute(Print("foo 1\n".to_string()))?;
        stdout.execute(Print("foo 2".to_string()))?;
        // The effects of the print command will not be present in the terminal
        // buffer, but not visible in the terminal.
        std::io::Result::Ok(())
    })?;

    // The effects of the commands will be visible.

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}
§Notes

This command is performed only using ANSI codes, and will do nothing on terminals that do not support ANSI codes, or this specific extension.

When rendering the screen of the terminal, the Emulator usually iterates through each visible grid cell and renders its current state. With applications updating the screen a at higher frequency this can cause tearing.

This mode attempts to mitigate that.

When the synchronization mode is enabled following render calls will keep rendering the last rendered state. The terminal Emulator keeps processing incoming text and sequences. When the synchronized update mode is disabled again the renderer may fetch the latest screen buffer state again, effectively avoiding the tearing effect by unintentionally rendering in the middle a of an application screen update.

§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
source§

impl<T> ToHex for T
where T: AsRef<[u8]>,

source§

fn encode_hex<U>(&self) -> U
where U: FromIterator<char>,

Encode the hex strict representing self into the result. Lower case letters are used (e.g. f9b4ca)
source§

fn encode_hex_upper<U>(&self) -> U
where U: FromIterator<char>,

Encode the hex strict representing self into the result. Upper case letters are used (e.g. F9B4CA)
source§

impl<T> ToOwned for T
where T: Clone,

source§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for T
where T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T> ToTonicStatus for T
where T: Error + ?Sized,

source§

fn to_status( &self, code: Code, service_name: impl Into<Cow<'static, str>>, ) -> Status

Convert the error to tonic::Status with the given tonic::Code and service name. Read more
source§

fn to_status_unnamed(&self, code: Code) -> Status

Convert the error to tonic::Status with the given tonic::Code without specifying the service name. Prefer to_status if possible. Read more
§

impl<T> ToValue for T
where T: Into<Value> + Clone,

§

fn to_value(&self) -> Value

§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<R> VarIntReader for R
where R: Read,

§

fn read_varint<VI>(&mut self) -> Result<VI, Error>
where VI: VarInt,

Returns either the decoded integer, or an error. Read more
§

impl<Inner> VarIntWriter for Inner
where Inner: Write,

§

fn write_varint<VI>(&mut self, n: VI) -> Result<usize, Error>
where VI: VarInt,

§

impl<T> WithParams for T
where T: StatementLike,

§

fn with<P>(self, params: P) -> QueryWithParams<T, P>

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<W> WriteBytesExt for W
where W: Write + ?Sized,

§

fn write_u8(&mut self, n: u8) -> Result<(), Error>

Writes an unsigned 8 bit integer to the underlying writer. Read more
§

fn write_i8(&mut self, n: i8) -> Result<(), Error>

Writes a signed 8 bit integer to the underlying writer. Read more
§

fn write_u16<T>(&mut self, n: u16) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 16 bit integer to the underlying writer. Read more
§

fn write_i16<T>(&mut self, n: i16) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 16 bit integer to the underlying writer. Read more
§

fn write_u24<T>(&mut self, n: u32) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 24 bit integer to the underlying writer. Read more
§

fn write_i24<T>(&mut self, n: i32) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 24 bit integer to the underlying writer. Read more
§

fn write_u32<T>(&mut self, n: u32) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 32 bit integer to the underlying writer. Read more
§

fn write_i32<T>(&mut self, n: i32) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 32 bit integer to the underlying writer. Read more
§

fn write_u48<T>(&mut self, n: u64) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 48 bit integer to the underlying writer. Read more
§

fn write_i48<T>(&mut self, n: i64) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 48 bit integer to the underlying writer. Read more
§

fn write_u64<T>(&mut self, n: u64) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 64 bit integer to the underlying writer. Read more
§

fn write_i64<T>(&mut self, n: i64) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 64 bit integer to the underlying writer. Read more
§

fn write_u128<T>(&mut self, n: u128) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 128 bit integer to the underlying writer.
§

fn write_i128<T>(&mut self, n: i128) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 128 bit integer to the underlying writer.
§

fn write_uint<T>(&mut self, n: u64, nbytes: usize) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned n-bytes integer to the underlying writer. Read more
§

fn write_int<T>(&mut self, n: i64, nbytes: usize) -> Result<(), Error>
where T: ByteOrder,

Writes a signed n-bytes integer to the underlying writer. Read more
§

fn write_uint128<T>(&mut self, n: u128, nbytes: usize) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned n-bytes integer to the underlying writer. Read more
§

fn write_int128<T>(&mut self, n: i128, nbytes: usize) -> Result<(), Error>
where T: ByteOrder,

Writes a signed n-bytes integer to the underlying writer. Read more
§

fn write_f32<T>(&mut self, n: f32) -> Result<(), Error>
where T: ByteOrder,

Writes a IEEE754 single-precision (4 bytes) floating point number to the underlying writer. Read more
§

fn write_f64<T>(&mut self, n: f64) -> Result<(), Error>
where T: ByteOrder,

Writes a IEEE754 double-precision (8 bytes) floating point number to the underlying writer. Read more
§

impl<T> WriteMysqlExt for T
where T: WriteBytesExt,

§

fn write_lenenc_int(&mut self, x: u64) -> Result<u64, Error>

Writes MySql’s length-encoded integer.
§

fn write_lenenc_str(&mut self, bytes: &[u8]) -> Result<u64, Error>

Writes MySql’s length-encoded string.
§

impl<W> Writer for W
where W: Write,

§

fn write(&mut self, slice: &[u8]) -> Result<(), Error>

Write the given DER-encoded bytes as output.
§

fn write_byte(&mut self, byte: u8) -> Result<(), Error>

Write a single byte.
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

§

impl<T> DevConfig for T
where T: Send + Sync + 'static + Debug,

§

impl<T> Formattable for T
where T: Deref, <T as Deref>::Target: Formattable,

§

impl<E> FromProtoError for E
where E: From<ProtoError> + Error + Clone,

§

impl<T> Key for T
where T: Send + Sync + 'static + Hash + Eq,

§

impl<T> Key for T
where T: Hash + Eq + Debug + Send + Sync + 'static,

source§

impl<T> LruKey for T
where T: Eq + Send + Hash,

source§

impl<T> LruValue for T
where T: Send + Sync,

§

impl<T> MaybeSend for T
where T: Send,

§

impl<T> MaybeSend for T
where T: Send,

§

impl<T> Parsable for T
where T: Deref, <T as Deref>::Target: Parsable,

§

impl<T> StatementLike for T
where T: StatementLike,

§

impl<T> StorageKey for T
where T: Key + Serialize + DeserializeOwned,

§

impl<T> StorageValue for T
where T: Value + Serialize + DeserializeOwned,

§

impl<T> TReadTransport for T
where T: Read,

§

impl<T> TWriteTransport for T
where T: Write,

§

impl<T> Value for T
where T: Send + Sync + 'static,